Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Healthcare (Basel) ; 12(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38255085

ABSTRACT

OBJECTIVES: Accumulating evidence suggests that physical activity (PA) is an efficient intervention to maintain functional capabilities and mitigate physiological changes in the older population. However, an attempt has yet to be made to comprehensively investigate the published landscape on the subject. METHODS: This study had two aims. The first aim was to perform a bibliometric analysis for two keywords, "aging" and "PA", to analyze the research trend. Since "frailty" was the most noticeable co-occurring keyword with the two keywords, the second aim was to investigate the effects of PA, particularly, resistance training (RT), on frailty using a meta-analysis to provide a summary of the current evidence base. RESULTS: The bibliometric analysis revealed that the number of publications on this research topic has gradually increased, highlighting the importance of understanding the role of PA in aging. The meta-analysis found that RT had significant beneficial effects on physical frailty factors, including handgrip strength, lower limb strength, balance, gait speed, and stair-climbing ability. CONCLUSION: These findings demonstrate that RT is an effective intervention for improving physical function in frail populations; thus, it has important implications for the development of PA programs for older adults with frailty. Future research is warranted to explore the optimal dose, frequency, and duration of RT programs for older adults, as well as the potential benefits of combining RT with other forms of PA, such as aerobic or balance exercises.

2.
Diabetes Metab J ; 47(6): 771-783, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690781

ABSTRACT

BACKGRUOUND: Since prediabetes is a risk factor for metabolic syndromes, it is important to promote a healthy lifestyle to prevent prediabetes. This study aimed to determine the effects of green coffee (GC), chlorogenic acid (CGA) intake, and exercise training (EX) on hepatic lipid metabolism in prediabetes male C57BL/6 mice. METHODS: Forty-nine mice were randomly divided into two groups feeding with a normal diet (n=7) or a high-fat diet (HFD, n=42) for 12 weeks. Then, HFD mice were further divided into six groups (n=7/group): control (pre-D), GC, CGA, EX, GC+EX, and CGA+EX. After additional 10 weeks under the same diet, plasma, and liver samples were obtained. RESULTS: HFD-induced prediabetes conditions with increases in body weight, glucose, insulin, insulin resistance, and lipid profiles were alleviated in all treatment groups. Acsl3, a candidate gene identified through an in silico approach, was lowered in the pre-D group, while treatments partly restored it. HFD induced adverse alterations of de novo lipogenesis- and ß oxidation-associated molecules in the liver. However, GC and CGA supplementation and EX reversed or ameliorated these changes. In most cases, GC or CGA supplementation combined with EX has no synergistic effect and the GC group had similar results to the CGA group. CONCLUSION: These findings suggest that regular exercise is an effective non-therapeutic approach for prediabetes, and CGA supplementation could be an alternative to partially mimic the beneficial effects of exercise on prediabetes.


Subject(s)
Chlorogenic Acid , Prediabetic State , Male , Mice , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Chlorogenic Acid/therapeutic use , Lipid Metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements
3.
Cardiovasc Res ; 118(17): 3386-3400, 2023 01 18.
Article in English | MEDLINE | ID: mdl-35020830

ABSTRACT

AIMS: Vascular stiffness increases with age and independently predicts cardiovascular disease risk. Epigenetic changes, including histone modifications, accumulate with age but the global pattern has not been elucidated nor are the regulators known. Smooth muscle cell-mineralocorticoid receptor (SMC-MR) contributes to vascular stiffness in ageing mice. Thus, we investigated the regulatory role of SMC-MR in vascular epigenetics and stiffness. METHODS AND RESULTS: Mass spectrometry-based proteomic profiling of all histone modifications completely distinguished 3 from 12-month-old mouse aortas. Histone-H3 lysine-27 (H3K27) methylation (me) significantly decreased in ageing vessels and this was attenuated in SMC-MR-KO littermates. Immunoblotting revealed less H3K27-specific methyltransferase EZH2 with age in MR-intact but not SMC-MR-KO vessels. These ageing changes were examined in primary human aortic (HA)SMC from adult vs. aged donors. MR, H3K27 acetylation (ac), and stiffness gene (connective tissue growth factor, integrin-α5) expression significantly increased, while H3K27me and EZH2 decreased, with age. MR inhibition reversed these ageing changes in HASMC and the decline in stiffness genes was prevented by EZH2 blockade. Atomic force microscopy revealed that MR antagonism decreased intrinsic stiffness and the probability of fibronectin adhesion of aged HASMC. Conversely, ageing induction in young HASMC with H2O2; increased MR, decreased EZH2, enriched H3K27ac and MR at stiffness gene promoters by chromatin immunoprecipitation, and increased stiffness gene expression. In 12-month-old mice, MR antagonism increased aortic EZH2 and H3K27 methylation, increased EZH2 recruitment and decreased H3K27ac at stiffness genes promoters, and prevented ageing-induced vascular stiffness and fibrosis. Finally, in human aortic tissue, age positively correlated with MR and stiffness gene expression and negatively correlated with H3K27me3 while MR and EZH2 are negatively correlated. CONCLUSION: These data support a novel vascular ageing model with rising MR in human SMC suppressing EZH2 expression thereby decreasing H3K27me, promoting MR recruitment and H3K27ac at stiffness gene promoters to induce vascular stiffness and suggests new targets for ameliorating ageing-associated vascular disease.


Subject(s)
Epigenesis, Genetic , Hydrogen Peroxide , Receptors, Mineralocorticoid , Adult , Aged , Animals , Humans , Mice , Aging/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Hydrogen Peroxide/metabolism , Muscle, Smooth/metabolism , Proteomics , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism
4.
Sci Total Environ ; 859(Pt 1): 160175, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36395851

ABSTRACT

The transition to renewable energy can disproportionately impact the effectiveness of climate change adaptation, due to regional heterogeneity. Many countries attempt to promote renewable energy to reduce the impact of climate change, but the impacts of national energy policy in the climate vulnerability framework remain little understood. Here, we exploit variations in renewable energy uses to test the effectiveness of climate adaptation policy across the dimensions of climate impact and vulnerability. Using the Fuzzy Analytic Hierarchy Process and panel data regression, we analyze the spatiotemporal correlation between renewable energy transition and climate vulnerability across the world. We find that while renewable energy increases proportionally with climate exposure and sensitivity, many countries exhibit discrepancies between the variation in renewable energy transition and climate vulnerability. The promotion of renewable energy funnels into nations with a higher level of adaptive capacity while bypassing more vulnerable countries. The results signify that existing renewable energy policies can exacerbate climate inequality and undermine the benefits of the transition to renewable energy by neglecting the spatial heterogeneity in climate vulnerability. Our findings provide empirical evidence for the ways in which renewable energy policy can generate spatial inequalities in climate adaptation.


Subject(s)
Climate Change , Renewable Energy , Acclimatization , Adaptation, Physiological
5.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: mdl-34324442

ABSTRACT

cGMP-dependent protein kinase 1α (PKG1α) promotes left ventricle (LV) compensation after pressure overload. PKG1-activating drugs improve heart failure (HF) outcomes but are limited by vasodilation-induced hypotension. Signaling molecules that mediate PKG1α cardiac therapeutic effects but do not promote PKG1α-induced hypotension could therefore represent improved therapeutic targets. We investigated roles of mixed lineage kinase 3 (MLK3) in mediating PKG1α effects on LV function after pressure overload and in regulating BP. In a transaortic constriction HF model, PKG activation with sildenafil preserved LV function in MLK3+/+ but not MLK3-/- littermates. MLK3 coimmunoprecipitated with PKG1α. MLK3-PKG1α cointeraction decreased in failing LVs. PKG1α phosphorylated MLK3 on Thr277/Ser281 sites required for kinase activation. MLK3-/- mice displayed hypertension and increased arterial stiffness, though PKG stimulation with sildenafil or the soluble guanylate cyclase (sGC) stimulator BAY41-2272 still reduced BP in MLK3-/- mice. MLK3 kinase inhibition with URMC-099 did not affect BP but induced LV dysfunction in mice. These data reveal MLK3 as a PKG1α substrate mediating PKG1α preservation of LV function but not acute PKG1α BP effects. Mechanistically, MLK3 kinase-dependent effects preserved LV function, whereas MLK3 kinase-independent signaling regulated BP. These findings suggest augmenting MLK3 kinase activity could preserve LV function in HF but avoid hypotension from PKG1α activation.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Heart Failure/physiopathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Ventricular Dysfunction, Left/physiopathology , Animals , Aorta/pathology , Blood Pressure/drug effects , Blood Pressure/genetics , HEK293 Cells , Heart Failure/complications , Humans , Hypertension/genetics , MAP Kinase Kinase Kinases/antagonists & inhibitors , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Sildenafil Citrate/pharmacology , Vascular Stiffness/genetics , Vasodilator Agents/pharmacology , Ventricular Dysfunction, Left/etiology , Mitogen-Activated Protein Kinase Kinase Kinase 11
6.
Sci Rep ; 11(1): 8446, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875718

ABSTRACT

Many countries promote urban agglomeration to enhance economic competitiveness, but the impacts of this strategy on local climate adaptation remain poorly understood. Here, we use variation in greenspaces to test the effectiveness of climate adaptation policy across climate impacts and vulnerability dimensions. Using satellite imagery and logistic regression, we analyze spatiotemporal correlation between greenspace and climate vulnerability in the Guangdong-Hong Kong-Macau Greater Bay Area, an area comprising ~ 70 million people and 11 cities, making it a useful natural experiment for our study. We find that while greenspace increases proportionally with climate exposure and sensitivity, many cities exhibit discrepancies between greenspace variation and climate vulnerability. Green adaptation funnels into wealthier, less vulnerable areas while bypassing more vulnerable ones, increasing their climate vulnerability and undermining the benefits of urban agglomeration. The results suggest that centrally-planned climate adaptation policy must accommodate local heterogeneity to improve urban sustainability. By neglecting local heterogeneity, urban agglomeration policy risks exacerbating spatial inequalities in climate adaptation.

7.
Circ Heart Fail ; 14(2): e007279, 2021 02.
Article in English | MEDLINE | ID: mdl-33517669

ABSTRACT

BACKGROUND: Mineralocorticoid receptor (MR) antagonists decrease heart failure (HF) hospitalization and mortality, but the mechanisms are unknown. Preclinical studies reveal that the benefits on cardiac remodeling and dysfunction are not completely explained by inhibition of MR in cardiomyocytes, fibroblasts, or endothelial cells. The role of MR in smooth muscle cells (SMCs) in HF has never been explored. METHODS: Male mice with inducible deletion of MR from SMCs (SMC-MR-knockout) and their MR-intact littermates were exposed to HF induced by 27-gauge transverse aortic constriction versus sham surgery. HF phenotypes and mechanisms were measured 4 weeks later using cardiac ultrasound, intracardiac pressure measurements, exercise testing, histology, cardiac gene expression, and leukocyte flow cytometry. RESULTS: Deletion of MR from SMC attenuated transverse aortic constriction-induced HF with statistically significant improvements in ejection fraction, cardiac stiffness, chamber dimensions, intracardiac pressure, pulmonary edema, and exercise capacity. Mechanistically, SMC-MR-knockout protected from adverse cardiac remodeling as evidenced by decreased cardiomyocyte hypertrophy and fetal gene expression, interstitial and perivascular fibrosis, and inflammatory and fibrotic gene expression. Exposure to pressure overload resulted in a statistically significant decline in cardiac capillary density and coronary flow reserve in MR-intact mice. These vascular parameters were improved in SMC-MR-knockout mice compared with MR-intact littermates exposed to transverse aortic constriction. CONCLUSIONS: These results provide a novel paradigm by which MR inhibition may be beneficial in HF by blocking MR in SMC, thereby improving cardiac blood supply in the setting of pressure overload-induced hypertrophy, which in turn mitigates the adverse cardiac remodeling that contributes to HF progression and symptoms.


Subject(s)
Heart Failure/genetics , Myocytes, Smooth Muscle/metabolism , Receptors, Mineralocorticoid/genetics , Ventricular Remodeling/genetics , Animals , Aorta/surgery , Arterial Pressure , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Constriction, Pathologic , Disease Models, Animal , Echocardiography , Gene Knockout Techniques , Heart Failure/diagnostic imaging , Heart Failure/pathology , Heart Failure/physiopathology , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/physiology
8.
Korean J Physiol Pharmacol ; 25(1): 1-14, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33361533

ABSTRACT

Cardiovascular disease (CVD) accounts for approximately 30% of all deaths worldwide and its prevalence is constantly increasing despite advancements in medical treatments. Cardiac remodeling and dysfunction are independent risk factors for CVD. Recent studies have demonstrated that cardiac structure and function are genetically influenced, suggesting that understanding the genetic basis for cardiac structure and function could provide new insights into developing novel therapeutic targets for CVD. Regular exercise has long been considered a robust nontherapeutic method of treating or preventing CVD. However, recent studies also indicate that there is inter-individual variation in response to exercise. Nevertheless, the genetic basis for cardiac structure and function as well as their responses to exercise training have yet to be fully elucidated. Therefore, this review summarizes accumulated evidence supporting the genetic contribution to these traits, including findings from population-based studies and unbiased large genomic-scale studies in humans.

9.
Sci Total Environ ; 757: 143780, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33250255

ABSTRACT

Despite the wide implementation of green spaces to mitigate the negative effects of urbanization, there is little evidence of how cities' socioeconomic development impacts the equality of urban green space (UGS) distribution. This paper addresses this knowledge gap. Employing longitudinal data analysis and the Gini index with various socioeconomic factors, we investigated potential driving factors for UGS equality at the prefectural city level (221 out of 341 cities in total) in China during the rapid urbanization from 2000 to 2015. Results indicated that 72% of Chinese cities (160 of 221) in our sample improved their UGS equality level from 2000 to 2015, whereas 14% of cities studied (31 out of 221) declined in both quantity and equality of green space. Nationwide, economic development levels reflected by gross domestic product per capita exerted a positive and significant impact on the equality of green space distributions. Urban afforestation-related policies in China were successful in promoting the equal distribution of green space. Regional analysis indicated divergent impacts of socioeconomic development and government policies on green space equality. Other institutional development factors, such as adopting a freer land market, might harm efforts toward equal green space distribution without appropriate safeguarding regulations and enforcement powers to ensure the implementation of an equal distribution of green spaces. These findings inform decision-makers about spatial variances in the equality of green space distribution in urban areas, which demand location-oriented interventions to promote inclusive urban afforestation in Chinese cities.

10.
Am J Physiol Heart Circ Physiol ; 320(1): H169-H180, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33095647

ABSTRACT

Aging is associated with heart and vascular dysfunction that contributes to cardiovascular disease (CVD) risk. Clinical data support a sexual dimorphism in the time course of aging-associated CVD. However, the mechanisms driving sex differences in cardiovascular aging and whether they can be modeled in mice have not been explored. Mineralocorticoid receptors (MRs) regulate blood pressure, and we previously demonstrated in male mice that MR expression increases in aging mouse vessels and smooth muscle cell-specific MR deletion (SMC-MR-KO) protects from cardiovascular aging. This study characterizes sex differences in murine cardiovascular aging and the associated sex-specific role of SMC-MR. Aortic stiffness, measured by pulse wave velocity, increased from 3 to 12 mo of age in males but not until 18 mo in females. The timing of the rise in aortic stiffening correlated with the timing of increased aortic MR expression, and aortic stiffness did not increase with age in SMC-MR-KO mice of both sexes. Vascular fibrosis increased at 12 mo in males and later at 18 mo in females; however, fibrosis was attenuated by SMC-MR-KO in males only. In resistance vessels, angiotensin type 1 receptor (AT1R)-mediated vasoconstriction also increased at 12 mo in males and 18 mo in females. ANG II-induced vasoconstriction was decreased in SMC-MR-KO specifically in males in association with decreased AT1R expression. Cardiac systolic function declined in males and females by 18 mo of age, which was prevented by SMC-MR-KO specifically in females. Cardiac perivascular fibrosis increased with age in both sexes accompanied by sex-specific changes in the expression levels of MR-regulated profibrotic genes.NEW & NOTEWORTHY These data demonstrate that the delayed and steeper decline in cardiovascular function observed in aging females can be modeled in aging mice. Moreover, the mechanisms driving vascular and cardiac aging phenotypes are distinct between males and females. Mineralocorticoid receptors in smooth muscle cells play a significant role in cardiovascular aging in both sexes; however, they do so by distinct mechanisms. Overall, these findings suggest that sex-specific therapies may be necessary to retard the aging process and improve cardiovascular disease outcomes in the aging population.


Subject(s)
Aging/metabolism , Cardiovascular Diseases/metabolism , Muscle, Smooth, Vascular/metabolism , Myocardium/metabolism , Receptors, Mineralocorticoid/metabolism , Age Factors , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/prevention & control , Female , Fibrosis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/physiopathology , Receptors, Mineralocorticoid/genetics , Sex Factors , Signal Transduction , Time Factors , Vascular Remodeling , Vascular Stiffness
11.
Article in English | MEDLINE | ID: mdl-33207576

ABSTRACT

(1) Background: Stress and pressure during competition and training impair athletes' performance in sports. However, the influence of mental stress on the prefrontal cortex (PFC) functioning in an athlete during the visual simulation task is unknown. The purpose of this pilot study was to investigate hemodynamic responses during the visual-simulation task that induces pressure and stress using functional near-infrared spectroscopy. (2) Methods: Ten archers and ten non-athlete collegiate students performed a visual-simulation task. Participants' current stress levels were collected using a visual analog scale before and after the task. Average oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) levels and their variability (standard deviation (SD) HbO, SD HbR, and SD HbT) were computed to compare the neural efficiency between athlete and non-athlete. (3) Results: In general, both groups exhibited increased stress levels after the simulation task, and there was no group difference in overall average hemodynamic response from PFC and dorsolateral prefrontal cortex (DLPFC). While the average hemodynamic response level did not differ between groups, variability in hemodynamic responses from the archer group showed a more stable pattern than the non-athlete group. (4) Conclusion: Under this experimental setting, decreasing the variability in hemodynamic responses during the visual simulation, potentially via stabilizing the fluctuation of PFC, was characterized by the stress-related compensatory neural strategy of elite archers.


Subject(s)
Athletes , Spectroscopy, Near-Infrared , Stress, Psychological , Athletes/psychology , Computer Simulation , Female , Hemoglobins/analysis , Humans , Male , Photic Stimulation , Pilot Projects , Stress, Psychological/prevention & control , Young Adult
12.
Physiol Rep ; 8(21): e14605, 2020 11.
Article in English | MEDLINE | ID: mdl-33190396

ABSTRACT

In this pilot work, we selected two inbred strains that respond well to endurance training (ET) (FVB/NJ, and SJL/J strains), and two strains that respond poorly (BALB/cByJ and NZW/LacJ), to determine the effect of a standardized ET treadmill program on mitochondrial and nuclear DNA (nucDNA) integrity, and mitochondrial DNA (mtDNA) copy number. DNA was isolated from plantaris muscles (n = 37) and a gene-specific quantitative PCR-based assay was used to measure DNA lesions and mtDNA copy number. Mean mtDNA lesions were not different within strains in the sedentary or exercise-trained states. However, mtDNA lesions were significantly higher in trained low-responding NZW/LacJ mice (0.24 ± 0.06 mtDNA lesions/10 Kb) compared to high-responding strains (mtDNA lesions/10 Kb: FVB/NJ = 0.11 ± 0.01, p = .049; SJL/J = 0.04 ± 0.02; p = .003). ET did not alter mean mtDNA copy numbers for any strain, although both sedentary and trained FVB/NJ mice had significantly higher mtDNA copies (99,890 ± 4,884 mtDNA copies) compared to low-responding strains (mtDNA copies: BALB/cByJ = 69,744 ± 4,675; NZW/LacJ = 65,687 ± 5,180; p < .001). ET did not change nucDNA lesions for any strain, however, SJL/J had the lowest mean nucDNA lesions (3.5 ± 0.14 nucDNA lesions/6.5 Kb) compared to all other strains (nucDNA lesions/6.5 Kb: FVB/NJ = 4.4 ± 0.11; BALB/cByJ = 4.7 ± 0.09; NZW/LacJ = 4.4 ± 0.11; p < .0001). Our results demonstrate strain differences in plantaris muscle mtDNA lesions in ET mice and, independent of condition, differences in mean mtDNA copy and nucDNA lesions between strains.


Subject(s)
DNA Copy Number Variations , DNA Damage , DNA, Mitochondrial/genetics , Mitochondria/genetics , Physical Conditioning, Animal , Animals , Endurance Training , Male , Mice , Mice, Inbred BALB C , Mice, Inbred Strains , Mitochondria/metabolism , Mitochondria/pathology , Species Specificity
13.
Korean J Physiol Pharmacol ; 24(1): 53-68, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31908575

ABSTRACT

The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.

14.
Front Physiol ; 10: 1165, 2019.
Article in English | MEDLINE | ID: mdl-31572215

ABSTRACT

Quantitative trait loci for exercise capacity and training-induced changes in exercise capacity were identified previously on mouse Chromosome 14. The aim of this study was to further investigate the role of Chromosome 14 in exercise capacity and responses to training in mice. Exercise phenotypes were measured in chromosome substitution strain mice carrying Chromosome 14 from the PWD/PhJ donor strain on the genetic background of a host C57BL/6J (B6) strain (B6.PWD14). Eight week old female and male mice from both strains completed a graded exercise test to exhaustion to assess intrinsic or baseline exercise capacity. A separate group of 12-week old female and male mice, randomly assigned to sedentary control (SED) or exercise training (EX) groups, completed a graded exercise test before and after a 4-week exercise training period. EX mice completed a 4-week training program consisting of treadmill running 5 days/week, 60 min/day at a final intensity of approximately 65% of maximum. For intrinsic exercise capacity, exercise time and work were significantly greater in female and male B6.PWD14 than sex-matched B6 mice. In the training study, female B6.PWD14 mice had higher pre-training exercise capacity than B6 mice. In contrast, there were no significant differences for pre-training exercise capacity between male B6 and B6.PWD14 mice. There were no significant strain differences for responses to training. These data demonstrate that PWD/PhJ alleles on Chromosome 14 significantly affect intrinsic exercise capacity. Furthermore, these results support continued efforts to identify candidate genes on Chromosome 14 underlying variation in exercise capacity.

15.
Article in English | MEDLINE | ID: mdl-31507534

ABSTRACT

The mineralocorticoid receptor (MR) was originally identified as a regulator of blood pressure, able to modulate renal sodium handling in response to its principal ligand aldosterone. MR is expressed in several extra-renal tissues, including the heart, vasculature, and adipose tissue. More recent studies have shown that extra-renal MR plays a relevant role in the control of cardiovascular and metabolic functions and has recently been implicated in the pathophysiology of aging. MR activation promotes vasoconstriction and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Aging is associated with increased arterial stiffness and vascular tone, and modifications of arterial structure and function are responsible for these alterations. MR activation contributes to increase blood pressure with aging by regulating myogenic tone, vasoconstriction, and vascular oxidative stress. Importantly, aging represents an important contributor to the increased prevalence of cardiometabolic syndrome. In the elderly, dysregulation of MR signaling is associated with hypertension, obesity, and diabetes, representing an important cause of increased cardiovascular risk. Clinical use of MR antagonists is limited by the adverse effects induced by MR blockade in the kidney, raising the risk of hyperkalaemia in older patients with reduced renal function. Therefore, there is an unmet need for the enhanced understanding of the role of MR in aging and for development of novel specific MR antagonists in the context of cardiovascular rehabilitation in the elderly, in order to reduce relevant side effects.

16.
Hypertension ; 71(4): 609-621, 2018 04.
Article in English | MEDLINE | ID: mdl-29463624

ABSTRACT

Stiffening of the vasculature with aging is a strong predictor of adverse cardiovascular events, independent of all other risk factors including blood pressure, yet no therapies target this process. MRs (mineralocorticoid receptors) in smooth muscle cells (SMCs) have been implicated in the regulation of vascular fibrosis but have not been explored in vascular aging. Comparing SMC-MR-deleted male mice to MR-intact littermates at 3, 12, and 18 months of age, we demonstrated that aging-associated vascular stiffening and fibrosis are mitigated by MR deletion in SMCs. Progression of cardiac stiffness and fibrosis and the decline in exercise capacity with aging were also mitigated by MR deletion in SMC. Vascular gene expression profiling analysis revealed that MR deletion in SMC is associated with recruitment of a distinct antifibrotic vascular gene expression program with aging. Moreover, long-term pharmacological inhibition of MR in aged mice prevented the progression of vascular fibrosis and stiffness and induced a similar antifibrotic vascular gene program. Finally, in a small trial in elderly male humans, short-term MR antagonism produced an antifibrotic signature of circulating biomarkers similar to that observed in the vasculature of SMC-MR-deleted mice. These findings suggest that SMC-MR contributes to vascular stiffening with aging and is a potential therapeutic target to prevent the progression of aging-associated vascular fibrosis and stiffness.


Subject(s)
Cellular Senescence , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Receptors, Mineralocorticoid , Spironolactone , Vascular Stiffness , Aged , Animals , Cellular Senescence/drug effects , Cellular Senescence/physiology , Disease Progression , Exercise Tolerance/physiology , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/prevention & control , Gene Expression/drug effects , Gene Expression Profiling , Humans , Male , Mice , Mineralocorticoid Receptor Antagonists/metabolism , Mineralocorticoid Receptor Antagonists/pharmacology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Spironolactone/metabolism , Spironolactone/pharmacology , Treatment Outcome , Vascular Stiffness/drug effects , Vascular Stiffness/physiology
17.
Front Physiol ; 8: 974, 2017.
Article in English | MEDLINE | ID: mdl-29249981

ABSTRACT

Changes in cardiorespiratory fitness in response to a standardized exercise training protocol differ substantially between individuals. Results from cross-sectional, twin, and family studies indicate genetics contribute to individual differences in both baseline exercise capacity and the response to training. Exercise capacity and responses to training also vary between inbred strains of mice. However, such studies have utilized a limited number of inbred strains. Therefore, the aim of this study was to characterize exercise-training responses in a larger number of genetically diverse strains of inbred mice and estimate the contribution of genetic background to exercise training responses. Eight-week old male mice from 24 inbred strains (n = 4-10/strain) performed a graded exercise test before and after 4 weeks of exercise training. Before training, exercise capacity was significantly different between strains when expressed as time (range = 21-42 min) and work performed (range = 0.42-3.89 kg·m). The responses to training also were significantly different between strains, ranging from a decrease of 2.2 min in NON/ShiLtJ mice to an increase of 8.7 min in SWR/J mice. Changes in work also varied considerably between the lowest (-0.24 kg·m in NON/ShiLtJ) and highest (+2.30 kg·m in FVB/NJ) performing strains. Heart and skeletal muscle masses also varied significantly between strains. Two broad sense heritability estimates were calculated for each measure of exercise capacity and for responses to training. For change in run time, the intraclass correlation between mice within the same inbred strain (rI) was 0.58 and the coefficient of genetic determination (g2) was 0.41. Heritability estimates were similar for the change in work: rI = 0.54 and g2 = 0.37. In conclusion, these results indicate genetic background significantly influences responses to exercise training.

18.
Front Physiol ; 7: 571, 2016.
Article in English | MEDLINE | ID: mdl-27932996

ABSTRACT

The endothelium plays an important role in the regulation of vasomotor tone and the maintenance of vascular integrity. Endothelial dysfunction, i.e., impaired endothelial dependent dilation, is a fundamental component of the pathogenesis of cardiovascular disease. Although endothelial dysfunction is associated with a number of cardiovascular disease risk factors, those risk factors are not the only determinants of endothelial dysfunction. Despite knowing many molecules involved in endothelial signaling pathways, the genetic contribution to endothelial function has yet to be fully elucidated. This mini-review summarizes current evidence supporting the genetic contribution to endothelial vasomotor function. Findings from population-based studies, association studies for candidate genes, and unbiased large genomic scale studies in humans and rodent models are discussed. A brief synopsis of the current studies addressing the genetic regulation of endothelial responses to exercise training is also included.

19.
Physiol Genomics ; 48(11): 861-873, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27764765

ABSTRACT

Understanding the genetic influence on vascular reactivity is important for identifying genes underlying impaired vascular function. The purpose of this study was to characterize the genetic contribution to intrinsic vascular function and to identify loci associated with phenotypic variation in vascular reactivity in mice. Concentration response curves to phenylephrine (PE), potassium chloride (KCl), acetylcholine (ACh), and sodium nitroprusside (SNP) were generated in aortic rings from male mice (12 wk old) from 27 inbred mouse strains. Significant strain-dependent differences were found for both maximal responses and sensitivity for each agent, except for SNP Max (%). Strain differences for maximal responses to ACh, PE, and KCl varied by two- to fivefold. On the basis of these large strain differences, we performed genome-wide association mapping (GWAS) to identify loci associated with variation in responses to these agents. GWAS for responses to ACh identified four significant and 19 suggestive loci. Several suggestive loci for responses to SNP, PE, and KCl (including one significant locus for KCl EC50) were also identified. These results demonstrate that intrinsic endothelial function, and more generally vascular function, is genetically determined and associated with multiple genomic loci. Furthermore, these results are supported by the finding that several genes residing in significant and suggestive loci for responses to ACh were previously identified in rat and/or human quantitative trait loci/GWAS for cardiovascular disease. This study represents the first step toward the unbiased comprehensive discovery of genetic determinants that regulate intrinsic vascular function, particularly endothelial function.


Subject(s)
Aorta/physiology , Endothelium, Vascular/physiology , Vasodilation/genetics , Acetylcholine/pharmacology , Animals , Body Weight/drug effects , Genome-Wide Association Study , Male , Mice , Mice, Inbred Strains , Myocardial Contraction/drug effects , Nitroprusside/pharmacology , Phenylephrine/pharmacology , Potassium Chloride/pharmacology , Quantitative Trait Loci/genetics , Vasodilation/drug effects
20.
PLoS One ; 10(12): e0145741, 2015.
Article in English | MEDLINE | ID: mdl-26710100

ABSTRACT

Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.


Subject(s)
Physical Conditioning, Animal/physiology , Physical Exertion/genetics , Animals , Chromosome Mapping , Crosses, Genetic , Female , Genotype , Male , Mice , Mice, 129 Strain , Mice, Inbred Strains , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...