Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters










Publication year range
1.
Small ; : e2402887, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895964

ABSTRACT

Attractive depletion interactions are utilized to organize colloidal particles into crystalline arrays with high crystallinity through spontaneous phase separation. However, uncontrolled nucleation frequently leads to the formation of crystalline grains with varied crystal orientations, which hampers the optical performance of photonic crystals. Here, colloidal crystals have been engineered with uniform orientation and high surface coverage by applying centrifugal force during the depletion-induced assembly of polystyrene particles. The centrifugal force encourages the particles to move toward the bottom surface, which fosters heterogeneous nucleation and supports rapid crystal growth, yielding densely-packed and uniformly-arranged crystal grains with high reflectivity. This study has observed that the nucleation and crystal growth behavior is significantly influenced by the salt concentration. Based on the pair potentials, the transition boundary has been quantitatively analyzed between fluid and crystal phases and identified the threshold for homogeneous nucleation. Utilizing the high-reflectivity colloidal crystals, band-edge lasing is achieved by dissolving the water-soluble dye into the aqueous suspensions. Upon optical excitation, a lasing emission characterized is observed by a narrow spectral width at the short-wavelength band edge. Notably, the laser wavelength can be adjusted by altering the salt concentration or particle diameter, offering a versatile approach to tuning the optical properties.

2.
Sci Adv ; 10(24): eado0745, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875331

ABSTRACT

Self-assembly of nanoparticles (NPs) in drying emulsion droplets paves the way for intricate three-dimensional (3D) superstructures, given the myriad of control parameters for fine-tuning assembly conditions. With their substantial energetic dynamics that are acutely responsive to emulsion confinements, polymeric ligands incorporated into a system can enrich its structural diversity. Here, we demonstrate the assembly of soft polymer-grafted NPs into Mackay icosahedrons beyond spherical body-centered cubic (BCC) packing structures commonly observed for these soft spheres. This behavior is governed by the free energy minimization within emulsions through the interplay of the oil-water interfacial energy and confinement effect as demonstrated by the experimental observations of structural transitions between icosahedrons and BCC crystals and by corresponding free energy calculations. The anisotropic surface of the icosahedral supracrystals provides the capability of guiding the position of a secondary constituent, creating unique hybrid patchy icosahedrons with the potential to develop into multifunctional 3D clusters that combine the benefits of both polymers and conventional colloids.

3.
Article in English | MEDLINE | ID: mdl-38593432

ABSTRACT

Printing structurally colored patterns is of great importance for providing customized graphics for various purposes. Although a direct writing technique has been developed, the use of colloidal dispersions as photonic inks requires delicate printing conditions and restricts the mechanical and optical properties of printed patterns. In this work, we produce elastic photonic microbeads through scalable bulk emulsification and formulate photonic inks containing microbeads for direct writing. To produce the microbeads, a photocurable colloidal dispersion is emulsified into a highly concentrated sucrose solution via vortexing, which results in spherical emulsion droplets with a relatively narrow size distribution. The microbeads are produced by photopolymerization and are then suspended in urethane acrylate resin at volume fractions of 0.35-0.45. The photonic inks retain high color saturation of the microbeads and offer enhanced printability and dimensional control on various target substrates including fabrics, papers, and even skins. Importantly, the printed graphics show high mechanical stability as the elastic microbeads are embedded in the polyurethane matrix. Moreover, the colors show a wide viewing angle and low-angle dependency due to the optical isotropy of individual microbeads and light refraction at the air-matrix interface. We postulate that this versatile direct writing technique is potentially useful for structural color coating and printing on the surfaces of arbitrary 3D objects.

4.
J Colloid Interface Sci ; 668: 272-281, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678883

ABSTRACT

HYPOTHESIS: Microcapsules with osmotically-inflated elastic shells exhibit an ultrafast release of encapsulants while mechanically stimulating the microenvironments, akin to popping balloons. EXPERIMENTS: To prepare elastic shells with uniform thickness and size, monodisperse water-in-oil-in-water (W/O/W) double-emulsion drops are produced in a capillary microfluidic device. The polydimethylsiloxane (PDMS)-containing oil phase is thermally cured to create the elastic shell. The elastic shells are inflated by pumping water into the lumen in hypotonic conditions. The inflated microcapsules produced undergo mechanical compression, and their release properties are studied. FINDINGS: By controlling the osmotic pressure difference, Microballoons are inflated into a diameter of 200 µm - 316 µm and shell thickness of 7.8 µm - 0.7 µm, respectively. The inflated shell pops due to mechanical failure when subjected to mechanical stress above a certain threshold, resembling a balloon. During popping, the stretched shell rapidly retracts to the original uninflated state, resulting in an ultrafast release of encapsulants from the lumen within a millisecond. This process converts elastic potential energy stored in the shell into mechanical energy with substantial power. The microballoons mechanically stimulate the local environment, leading to the direct and rapid release of encapsulants. This has the potential to improve absorption efficiency.

5.
Microsyst Nanoeng ; 10: 21, 2024.
Article in English | MEDLINE | ID: mdl-38298552

ABSTRACT

Colloidal crystallization serves as one of the most economic and scalable production methods for photonic crystals. However, insufficient optical performance, nonuniformity and low reproducibility remain challenges for advanced high-value applications. In this study, we optimally formulate a photocurable dispersion of silica particles and apply shear flow to unify the orientation of the colloidal crystals, ensuring high optical performance and uniformity. The silica particles experience strong repulsion at ultrahigh volume fractions of 50% but demonstrate low mobility, leading to polycrystalline structures. Applying shear flow to the dispersions allows the silica particles to rearrange into larger crystalline domains with a unidirectional orientation along the flow. This shear-induced structural change produces absolute reflectivity at the stopband as high as 90% and a high transparency of 90% at off-resonant wavelengths with minimal diffusive scattering. Furthermore, the strong interparticle repulsion ensures a uniform volume fraction of particles throughout the dispersion, reducing deviations in the optical properties. We intricately micropattern the photocurable dispersions using photolithography. Additionally, the photonic films and patterns can be stacked to form multiple layers, displaying mixed structural colors and multiple reflectance peaks without sacrificing reflectivity. These superior photonic materials hold promise for various optical applications, including optical components and anticounterfeiting patches.

6.
Small ; : e2311543, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334249

ABSTRACT

Dendrites are ubiquitous crystals produced in supersaturated solutions and supercooled melts, but considerably less is known about their formation and growth kinetics. Here, the key factors are explored that dictate dendrite formation and growth, utilizing experimental colloidal models in which the particles act as molecules with Mie potential. Depletion attraction is employed to colloids and manipulate their strength to control supersaturation. Dendrites are predominantly produced under conditions of low supersaturation, where the separation between crystals is large due to slow nucleation. The dendrites do not emerge directly from nuclei. Instead, isotropic grains, initially produced from nuclei, morph into polygons. Arms then sprout from the vertices of these polygons, eventually giving rise to dendrites. Triggering this polygon-to-dendrite transformation requires a high diffusional flux. This necessitates a prolonged diffusion time to maintain a steep concentration gradient in the surrounding environment even after the transformation from circular grains to polygons.

7.
Small ; 20(26): e2310283, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38227378

ABSTRACT

Conventional hydrogel microcapsules often suffer from inadequate mechanical stability, hindering their use. Here, water-cored double-network (DN) hydrogel shells are designed, formed by polyacrylamide and calcium alginate networks using triple-emulsion templates. These DN hydrogel shells offer robust mechanical stability, optical transparency, and a precisely-defined cut-off threshold. The feasibility of this platform is demonstrated through the development of a fluorometric glucose sensor. Glucose oxidase is enclosed within the water core, while a pH-responsive fluorescent dye is incorporated into the DN shells. Glucose diffuses into the core through the DN shells, where the glucose oxidase converts glucose into gluconic acid, leading to pH reduction and a subsequent decrease in fluorescence intensity of DN shells. Additionally, the pH-sensitive colorant dissolved in the medium enables visual pH assessment. Thus, glucose levels can be determined using both fluorometric and colorimetric methods. Notably, the DN shells exhibit exceptional stability, enduring intense mechanical stress and cycles of drying and rehydration without leakage. Moreover, the DN shells act as effective barriers, safeguarding glucose oxidase against proteolysis by large disruptive proteins, like pancreatin. This versatile DN shell platform extends beyond glucose oxidase encapsulation, serving as a foundation for various capsule sensors utilizing enzymes and heterogeneous catalysts.


Subject(s)
Glucose Oxidase , Glucose , Hydrogels , Glucose/analysis , Glucose/chemistry , Hydrogels/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Hydrogen-Ion Concentration , Biosensing Techniques/methods , Alginates/chemistry , Acrylic Resins/chemistry
8.
ACS Omega ; 9(2): 2519-2527, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250383

ABSTRACT

Furfural is an intermediary toxic aldehyde compound produced during heat-induced food processing and storage. Furfural is also formed by the degradation of cellulosic insulation in oil-immersed electric potential transformers, whose level is an important indicator of aging for replacement. In this study, we report a new means to detect the trace level of furfural in a colorimetric manner. Furfural is reacted with dinitrophenylhydrazine (DNPH) in acid solutions. The colorless furfural-DNPH compound turns orange-colored as the solution changes to basic. The delocalization of the π-electron in the DNPH-aldehyde derivatives at the basic condition causes the shift of the absorption peak from 318 to 470 nm, which renders the solution orange-colored. The color and absorbance are saturated in 20 min of incubation. There is high linearity between the absorbance and the concentration of furfural in the range of 0-0.2 mM, which enables the quantitative detection of furfural. The limit of detection is estimated to be as low as 1.76 µM for the absorbance analysis and 10 µM for the naked eyes. The colorimetric assay protocol is applicable to the detection of various aromatic aldehydes, which show strong π-electron delocalization and is not applicable to aliphatic aldehydes due to lack of delocalization. This simple assay can be conducted in typical 96-well microplates using a microplate reader, which provides a low-cost and high-throughput screening. Therefore, we believe that our method is potentially applicable for the quantitative detection of aromatic aldehydes in various samples from foods, electronic devices, and so on.

9.
Adv Sci (Weinh) ; 11(1): e2304022, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942590

ABSTRACT

Photonic crystals with mechanochromic properties are currently under intensive study to provide intuitive colorimetric detection of strains for various applications. However, the sensitivity of color change to strain is intrinsically limited, as the degree of deformation determines the wavelength shift. To overcome this limitation, auxetic photonic patterns that exhibit ultra-sensitive mechanochromism are designed. These patterns have a regular arrangement of cuts that expand to accommodate the strain, while the skeletal framework undergoes torsional deformation. Elastic photonic crystals composed of a non-close-packed array of colloidal particles are embedded in the cut area of the auxetic patterns. As the cut area amplifies the strains, the elastic photonic crystals show significant color change even for small total strains. The degree of local-strain amplification, or sensitivity of color change, is controllable by adjusting the width of cuts in the auxetic framework. In this work, a maximum sensitivity of up to 60 nm/% is achieved, which is 20 times higher than bulk films. It is believed that the auxetic photonic patterns with ultra-sensitive mechanochromism will provide new opportunities for the pragmatic use of mechanochromic materials in various fields, including structural health monitoring.

10.
Adv Mater ; 36(9): e2307917, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37909823

ABSTRACT

Direct ink writing (DIW) stands out as a facile additive manufacturing method, minimizing material waste. Nonetheless, developing homogeneous Bingham inks with high yield stress and swift liquid-to-solid transitions for versatile 3D printing remains a challenge. In this study, high-performance Bingham inks are formulated by destabilizing silica particle suspensions in acrylate-based resin. A colloidal network forms in the shear-free state through interparticle attraction, achieved by disrupting the solvation layer of large resin molecules using polar molecules. The network is highly dense, with evenly distributed linkage strength as monodisperse particles undergo gelation at an ultra-high fraction. Crucially, the strength is calibrated to ensure a sufficiently large yield stress, while still allowing the network to reversibly melt under shear flow. The inks immediately undergo a liquid-to-solid transition upon discharge, while maintaining fluidity without nozzle clogging. The dense colloidal networks develop structural colors due to the short-range order. This enables the rapid and sophisticated drawing of structurally-colored 3D structures, relying solely on rheological properties. Moreover, the printed composite structures exhibit high mechanical stability due to the presence of the colloidal network, which expands the range of potential applications.

11.
Adv Mater ; 36(4): e2309938, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989520

ABSTRACT

Colloidal crystals display photonic stopbands that generate reflective structural colors. While micropatterning offers significant value for various applications, the resolution is somewhat limited for conventional top-down approaches. In this work, a simple, single-step bottom-up approach is introduced to produce photonic micropatterns through depletion-mediated regioselective growth of colloidal crystals. Lithographically-featured micropatterns with planar surfaces and nano-needle arrays as substrates are employed. Heterogeneous nucleation is drastically suppressed on nano-needle arrays due to minimal particle-to-needles overlap of excluded volumes, while it is promoted on planar surfaces with large particle-to-plane volume overlap, enabling regioselective growth of colloidal crystals. This strategy allows high-resolution micropatterning of colloidal photonic crystals, with a minimum feature size as small as 10 µm. Stopband positions, or structural colors, are controllable through concentration and depletant and salt, as well as particle size. Notably, secondary colors can be created through structural color mixing by simultaneously crystallizing two different particle sizes into their own crystal grains, resulting in two distinct reflectance peaks at controlled wavelengths. The simple and highly reproducible method for regioselective colloidal crystallization provides a general route for designing elaborate photonic micropatterns suitable for various applications.

12.
J Craniomaxillofac Surg ; 52(1): 1-7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129184

ABSTRACT

This study aimed to analyze the anatomical differences in levator aponeurosis angle and length between both sides in double eyelidplasty in East Asians. The retrospective study included patients with mild blepharoptosis who underwent upper blepharoplasty with levator aponeurosis. In the study, 140 patients were enrolled, 126 females and 14 males, with an age range of 16-73 years. The mean levator aponeurosis angle was 19.2 ± 2.9° on the right and 17.0 ± 3.8° on the left, which was significantly different (95% CI, p < 0.001). The mean length was 24.1 mm on the right and 23.2 mm on the left, a difference that was also statistically significant (95% CI, p < 0.001). The relationship between the dominant eye and levator aponeurosis prominence was also investigated, although there was no apparent correlation. Within the limitations of the study, it seems that this is the first study of the anatomical differences of the levator aponeurosis between both sides, leading to a greater predictability of surgery to maximize postoperative symmetry.


Subject(s)
Blepharoplasty , Blepharoptosis , Male , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Retrospective Studies , Aponeurosis/surgery , Oculomotor Muscles , Eyelids/surgery , Blepharoptosis/surgery
13.
Small ; : e2309512, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072633

ABSTRACT

Colloids self-organize into icosahedral clusters composed of a Mackay core and an anti-Mackay shell under spherical confinement to minimize the free energy. This study explores the variation of surface arrangements of colloids in icosahedral clusters, focusing on the determining factors behind the surface arrangement. To efficiently assemble particles in emulsion droplets, droplet-to-droplet osmotic extraction from particle-laden droplets to salt-containing droplets is used, where the droplets are microfluidically prepared to guarantee a high size uniformity. The icosahedral clusters are optimally produced during a 24-h consolidation period at a 0.04 m salt concentration. The findings reveal an increase in the number of particle layers from 10 to 15 in the icosahedral clusters as the average number of particles increases from 3300 to 11 000. Intriguingly, the number of layers in the anti-Mackay shells, or surface termination, appears to more strongly depend on the sphericity of the clusters than on the deviation in the particle count from an ideal icosahedral cluster. This result suggests that the sphericity of the outermost layer, formed by the late-stage rearrangement of particles to form an anti-Mackay shell near the droplet interface, may play a pivotal role in determining the surface morphology to accommodate a spherical interface.

14.
ACS Appl Mater Interfaces ; 15(50): 58761-58769, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38084724

ABSTRACT

Regular arrays of colloidal particles can produce striking structural colors without the need for any chemical pigments. Regular arrays of colloidal particles can be processed into microparticles via emulsion templates for use as structural colorants. Photonic microparticles, however, suffer from intense incoherent scattering and lack of suspension stability. We propose a microfluidic technique to generate hydrogel-shelled photonic microspheres that display enhanced color saturation and suspension stability. We created these microspheres using oil-in-water-in-oil (O/W/O) double-emulsion droplets with well-defined dimensions with a capillary microfluidic device. The inner oil droplet contains silica particles in a photocurable monomer, while the middle water droplet carries the hydrogel precursor. Within the inner oil droplet, silica particles arrange into crystalline arrays due to solvation-layer-induced interparticle repulsion. UV irradiation solidifies the inner photonic core and the outer hydrogel shell. The hydrogel shell reduces white scattering and enhances the suspension stability in water. Notably, the hydrogel precursor in the water droplet aids in maintaining the solvation layer, resulting in enhanced crystallinity and richer colors compared with microspheres from O/W single-emulsion droplets. These hydrogel-encased photonic microspheres show promise as structural colorants in water-based inks and polymer composites.

15.
Article in English | MEDLINE | ID: mdl-38016084

ABSTRACT

Surface-enhanced Raman scattering (SERS) is an effective technique for amplifying the Raman signal of molecules by using metal nanostructures. However, these metal surfaces are susceptible to contamination by undesirable adhesives in complex mixtures, typically necessitating a time-consuming and costly sample pretreatment. In order to circumvent this, metal nanoparticles have been uniformly embedded within microgels by using microfluidics. In this work, we introduce a simple, scalable micromolding method for creating SERS-active cylindrical microgels designed to eliminate the need for pretreatment. These microcylinders are created through the simultaneous photoreduction and photo-cross-linking of precursor solutions. These solutions are optimized for consistent, high-intensity Raman signals as well as molecular size and charge selectivity. A sequential micromolding method is employed to design dual-compartment microcylinders, offering additional functionalities such as optical encoding, magnetoresponsiveness, and dual-charge selectivity. These SERS-active microcylinders provide robust Raman signals of small molecules, even in the presence of adhesive proteins, without compromising sensitivity. To demonstrate this capability, we directly detect pyocyanin in saliva and tartrazine in whole milk without any need for sample pretreatment.

16.
Plast Reconstr Surg ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37797243

ABSTRACT

BACKGROUND: This study aimed to analyze the novel operative outcomes of breast mound reconstruction followed by robot-assisted mastectomy in retrospective review. METHOD: Patients who underwent nipple-sparing mastectomy with a robotic device (Da Vinci Xi) and immediate prosthetic reconstruction prepectorally via lateral incision from June 2018 to July 2019 were enrolled. Patient characteristics, complications, and satisfaction via BREAST-Q were analyzed. The surgical technique was described in detail. RESULTS: Thirty-nine cases, including 7 bilateral cases (total 46 breasts), underwent robot-assisted nipple-sparing mastectomy followed by immediate prosthetic implant reconstruction prepectorally. The median patient age was 46.63 years (range: 21-63 years). The mean operation time for each prepectoral breast mound reconstruction using the direct-to-implant technique was 126.55 min. Overall satisfaction of robotic use was evaluated as superior to the conventional reconstruction method using BREAST-Q. Major infection was found in seven cases (15.2%), and complete nipple loss was found in three cases (6.6%). Severe complications requiring breast implant removal in the surgical technique occurred in four breasts (8.7%). Two cases were due to the coexistence of infection and skin necrosis; in one case, the skin flap had undergone the congestive phase on postoperative day (POD) 3 and required additional surgery to change the expander. Other complications were resolved by conservative care or minor revision. CONCLUSION: This report is the first concerning robot-assisted NSM followed by prepectoral ADM-wrapped prosthetic reconstruction. In our experience, this procedure seems to be not inferior to other methods. Further prospective research to evaluate oncologic outcomes is warranted.

17.
Adv Mater ; 35(38): e2302750, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37319336

ABSTRACT

Colloidal crystals are designed as photonic microparticles for various applications. However, conventional microparticles generally have only one stopband from a single lattice constant, which restricts the range of colors and optical codes available. Here, photonic microcapsules are created that contain two or three distinct crystalline grains, resulting in dual or triple stopbands that offer a wider range of colors through structural color mixing. To produce distinct colloidal crystallites from binary or ternary colloidal mixtures, the interparticle interaction is manipulated using depletion forces in double-emulsion droplets. Aqueous dispersions of binary or ternary colloidal mixtures in the innermost droplet are gently concentrated in the presence of a depletant and salt by imposing hypertonic conditions. Different-sized particles crystallize into their own crystals rather than forming random glassy alloys to minimize free energy. The average size of the crystalline grains can be adjusted with osmotic pressure, and the relative ratio of distinct grains can be controlled with the mixing ratio of particles. The resulting microcapsules with small grains and high surface coverage are almost optically isotropic and exhibit highly-saturated mixed structural colors and multiple reflectance peaks. The mixed color and reflectance spectrum are controllable with the selection of particle sizes and mixing ratios.

18.
Small ; 19(41): e2303728, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37293688

ABSTRACT

The photonic cross-communication between photonic droplets has provided complex color patterns through multiple reflections, potentially serving as novel optical codes. However, the cross-communication is mostly restricted to symmetric pairs of identical droplets. Here, a design rule is reported for the asymmetric pairing of two distinct droplets to provide bright color patterns through strong cross-communication and enrich a variety of optical codes. Cholesteric liquid crystal (CLC) droplets with different stopband positions and sizes are paired. The brightness of corresponding color patterns is maximized when the pairs are selected to effectively guide light along the double reflection path by stopbands of two droplets. The experimental results are in good agreement with a geometric model where the blueshift of stopbands is better described by the angles of refraction rather than reflection. The model predicts the effectiveness of pairing quantitatively, which serves as a design rule for programming the asymmetric photonic cross-communication. Moreover, three distinct droplets can be paired in triangular arrays, where all three cross-communication paths yield bright color patterns when three droplets are selected to simultaneously satisfy the rule. It is believed that asymmetric pairing of distinct CLC droplets opens new opportunities for programmable optical encoding in security and anti-counterfeiting applications.

19.
Soft Matter ; 19(20): 3543-3550, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37170825

ABSTRACT

In this work, we study the influence of surface tension on light-induced wrinkling of hydrogel disks containing patterned regions of photothermally-active gold nanoparticles at the air-water interface. The disks, which are initially radially stretched by the air-water surface tension, undergo wrinkling under illumination through a radially nonuniform photothermal deswelling. By tuning the surface tension of the surrounding air-water interface through variations in concentration of a poly(vinyl alcohol) surfactant, we observe a critical threshold for wrinkling, followed by a monotonic decrease in wrinkle number with decreasing surface tension. Finite element simulations performed to better understand this behavior reveal qualitatively similar trends as the experiments. The insights provided into elastocapillarity-mediated wrinkling may guide future efforts to control interfacial behaviour of reconfigurable and shape-morphing films.

20.
Nat Commun ; 14(1): 793, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36774360

ABSTRACT

Structural colors provide a promising visualization with high color saturation, iridescent characteristics, and fade resistance. However, pragmatic uses are frequently impeded by complex manufacturing processes for sophisticated nanostructures. Here, we report a facile emulsion-templating strategy to produce crescent-shaped microparticles as structural color pigments. The micro-crescents exhibit brilliant colors under directional light originating from total internal reflections and optical interferences in the absence of periodic nanostructures while being transparent under ambient light. The colors are finely tunable by adjusting the size of the micro-crescents, which can be further mixed to enrich the variety. Importantly, the pre-defined convex surface secures high stability of colors and enables structural coloration on target surfaces through direct deposition as inks. We anticipate this class of nanostructure-free structural colorants is pragmatic as invisible inks in particular for anti-counterfeiting patches and color cosmetics with distinctive impressions due to low-cost, scalable manufacturing, unique optical properties, and versatility.

SELECTION OF CITATIONS
SEARCH DETAIL
...