Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400055, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38504635

ABSTRACT

We present a novel synthetic route for the rapid construction of dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazoles via Na2S-promoted thiophene annulation. This method facilitated the synthesis of D18-Cl polymer, known for its efficacy as a polymer donor in bulk-heterojunction polymer solar cells. Starting from commercially available 4,7-dihalo-5,6-difluorobenzo[c][1,2,5]thiadiazole, various 4,7-dialkynylated compounds were obtained through Sonogashira reaction conditions. Subsequent Na2S-promoted thiophene annulations yielded DTBT and its derivatives in excellent yields within 10 minutes. DTBT was then utilized as a precursor for the concise synthesis of D18-Cl, benefiting from reduced synthetic steps, mild reaction conditions, decreased complexity, and high overall yields. In another route, a space group-bridged DTBT was directly constructed via Na2S-promoted thiophene annulations and converted into D18-Cl through a couple of steps. This developed protocol offers a straightforward and reliable synthetic tool, conducive to reducing complexities in the production of DTBT-based organic electronic materials, thereby advancing the potential commercialization of organic solar cells.

2.
Nat Commun ; 14(1): 150, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631466

ABSTRACT

Silicon monoxide (SiO), which exhibits better cyclability compared to silicon while delivering higher capacity than that of graphite, is an adequate material for the development of lithium-ion batteries (LIBs) having higher energy densities. However, incorporating silicon-based materials including SiO into stable graphite anode inevitably degrades not only cycle life but also calendar life of LIBs, while little is known about their aging mechanisms. Here, SiO-induced thermal instability of the graphite/SiO composite anode is investigated. We reveal that under thermal exposure, SiO accelerates the loss of lithium inventory and concomitantly facilitates the lithium de-intercalation from graphite. This self-discharge phenomenon, which is weakly observed in the graphite anode without SiO, is the result of preferential parasitic reaction on the SiO interface and spontaneous electron and lithium-ion migration to equilibrate the electron energy imbalance between graphite and SiO. Understanding this underlying electron-level interplay between graphite and SiO in the composite anode will contribute toward improving shelf life of SiO-containing LIBs in actual operating conditions.

3.
Radiat Oncol J ; 40(1): 53-65, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35368201

ABSTRACT

PURPOSE: This study aims to investigate the effect of splenectomy on radiation-mediated growth inhibition and immune modulation in lung cancer xenograft models. MATERIALS AND METHODS: Human non-small cell lung cancer H1299 cells and murine Lewis lung carcinoma LL/2-luc cells were injected into the right hind leg of BALB/c-nude mice and C57BL/6 mice, respectively. Splenectomy or sham operation was performed prior to tumor cell injection or before and after irradiation during tumor growth. Irradiation was delivered with 2-3 fractions of 6 Gy X-ray using a linear accelerator. Flow cytometry analysis was performed for immune cell profiling. RESULTS: Splenectomy prior to tumor injection or at early stage inhibited growth of LL/2-luc tumors but not that of H1299 tumors; however, it did not enhance the antitumor effect of radiation regardless of intervention timing. Flow cytometry analysis showed monocytic myeloid-derived suppressor cells (MDSCs) and activated CD8+ T cells increased after irradiation in the tumors of splenectomized mice, compared to those of sham-operated mice. Administration of anti-PD-1 (programmed death-1) antibodies improved the ability of splenectomy to attenuate the growth of irradiated tumors. CONCLUSION: Splenectomy has paradoxical effects on radiation-induced tumor growth inhibition, depending on tumor types and intervention timing, but it has an immune-modulating effect when combined with radiation.

4.
ACS Appl Mater Interfaces ; 14(15): 17340-17347, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35385265

ABSTRACT

Silicon (Si) anodes in lithium-ion batteries (LIBs) suffer from huge volume changes that lead to a rapid capacity decrease and short cycle life. A conductive binder can be a key factor to overcome this issue, maintaining continuous electron paths under pulverization of Si. Herein, composites of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly(vinyl alcohol) (PVA) are augmented with poly(ethylene glycol) (PEG) and poly(ethylene oxide) (PEO) as a binder for Si anodes, which forms hierarchical structures due to different chain lengths of PEG and PEO. The integration of PEG and PEO imparts higher electrical conductivity (∼40%) and stretchability (∼60%) through densely spread hydrogen bonding and cross-linking, compared to conductive polymer binders with PEO or PEG. Further, a silver nanowire (AgNW) network combined with the polymer binder supplies an effective three-dimensional (3D) electrical path, sufficient void space to buffer the volume changes, and highly adhesive interaction with the current collector. The fabricated Si anode demonstrates a higher specific capacity of 1066 mAh g-1 at 0.8 A g-1 after 100 cycles and improved rate capability.

5.
Pharmaceutics ; 13(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34834226

ABSTRACT

Immunomodulation by radiotherapy (RT) is an emerging strategy for improving cancer immunotherapy. Nanomaterials have been employed as innovative tools for cancer therapy. This study aimed to investigate whether mesoporous silica nanoparticles (MSNs) enhance RT-mediated local tumor control and the abscopal effect by stimulating anti-cancer immunity. Hepa1-6 murine hepatocellular carcinoma syngeneic models and immunophenotyping with flow cytometry were used to evaluate the immune responses. When mice harboring bilateral tumors received 8 Gy of X-rays on a single tumor, the direct injection of MSNs into irradiated tumors enhanced the growth inhibition of irradiated and unirradiated contralateral tumors. MSNs enhanced RT-induced tumor infiltration of cytotoxic T cells on both sides and suppressed RT-enhanced infiltration of regulatory T cells. The administration of MSNs pre-incubated with irradiated cell-conditioned medium enhanced the anti-tumor effect of anti-PD1 compared to the as-synthesized MSNs. Intracellular uptake of MSNs activated JAWS II dendritic cells (DCs), which were consistently observed in DCs in tumor-draining lymph nodes (TDLNs). Our findings suggest that MSNs may capture tumor antigens released after RT, which is followed by DC maturation in TDLNs and infiltration of cytotoxic T cells in tumors, thereby leading to systemic tumor regression. Our results suggest that MSNs can be applied as an adjuvant for in situ cancer vaccines with RT.

6.
Antioxidants (Basel) ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34829640

ABSTRACT

Tumor migration and invasion induced by the epithelial-to-mesenchymal transition (EMT) are prerequisites for metastasis. Here, we investigated the inhibitory effect of a mimic of superoxide dismutase (SOD), cationic Mn(III) ortho-substituted N-n-hexylpyridylporphyrin (MnTnHex-2-PyP5+, MnHex) on the metastasis of breast cancer in cellular and animal models, focusing on the migration of tumor cells and the factors that modulate this behavior. Wound healing and Transwell migration assays revealed that the migration of mouse mammary carcinoma 4T1 cells was markedly reduced during the concurrent treatment of MnHex and radiation therapy (RT) compared with that of the control and RT alone. Bioluminescence imaging showed that MnHex/RT co-treatment dramatically reduced lung metastasis of 4T1 cells in mice, compared with the sham control and both single treatments. Western blotting and immunofluorescence showed that MnHex treatment of 4T1 cells reversed the RT-induced EMT via inhibiting AKT/GSK-3ß/Snail pathway in vitro, thereby decreasing cell migration and invasion. Consistently, histopathological analyses of 4T1 tumors showed that MnHex/RT reduced Snail expression, blocked EMT, and in turn suppressed metastases. Again, in the human metastatic breast cancer MDA-MB-231 cell line, MnHex inhibited metastatic potential in vitro and in vivo and suppressed the RT-induced Snail expression. In addition to our previous studies showing tumor growth inhibition, this study demonstrated that MnHex carries the ability to minimize the metastatic potential of RT-treated cancers, thus overcoming their radioresistance.

7.
Clin Mol Hepatol ; 27(1): 144-156, 2021 01.
Article in English | MEDLINE | ID: mdl-33280350

ABSTRACT

BACKGROUND/AIMS: The abscopal effect, a rare phenomenon induced by radiation, can be reinforced by immunotherapy. Although radiation therapy and immunotherapy are increasingly being utilized for the treatment of hepatocellular carcinoma (HCC), whether immunotherapy could boost the abscopal effect remains unclear. In this study, we aimed to elucidate the immunological mechanisms underlying the abscopal effect induced by the combination of irradiation and immunotherapy in a murine HCC model. METHODS: A syngeneic HCC mouse model was established by transplanting murine Hepa 1-6 HCC cells into both hind legs of immunocompetent C57BL/6 mice. The tumors on the right hind legs were irradiated, and abscopal effects were observed in the non-irradiated tumors on the left hind leg with or without the coadministration of anti-programmed cell death 1 (PD-1) antibodies. Flow cytometric analyses were performed to analyze the distributions of immune cells infiltrating both irradiated and non-irradiated tumors and the tumor-draining lymph nodes (TDLNs). RESULTS: Administration of 16 Gy in two fractions more effectively inhibited the growth of both irradiated and nonirradiated tumors with higher tumor infiltration of cytotoxic T cells than 8 Gy did in a single fraction. The higher dose also increased activated dendritic cells in TDLNs, which had higher expression of the programmed cell death ligand 1. Coadministration of anti-PD-1 antibodies significantly enhanced the abscopal effect and increased infiltration of activated cytotoxic T cells in both irradiated and non-irradiated tumors. CONCLUSION: Our findings show that adding anti-PD-1 therapy to radiation enhanced the abscopal effect in a syngeneic murine model of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Programmed Cell Death 1 Receptor/metabolism , Animals , Apoptosis , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL
8.
Mar Drugs ; 18(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707897

ABSTRACT

Radiation dermatitis (RD) is one of the most common side effects of radiotherapy; its symptoms progress from erythema to dry and moist desquamation, leading to the deterioration of the patients' quality of life. Active metabolites in brown seaweed, including phlorotannins (PTNs), show anti-inflammatory activities; however, their medical use is limited. Here, we investigated the effects of PTNs in a mouse model of RD in vivo. X-rays (36 Gy) were delivered in three fractions to the hind legs of BALB/c mice. Macroscopic RD scoring revealed that PTNs significantly mitigated RD compared with the vehicle control. Histopathological analyses of skin tissues revealed that PTNs decreased epidermal and dermal thickness compared with the vehicle control. Western blotting indicated that PTNs augmented nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway activation but attenuated radiation-induced NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, suggesting the mitigation of acute inflammation in irradiated mouse skin. PTNs also facilitated fast recovery, as indicated by increased aquaporin 3 expression and decreased γH2AX (histone family member X) expression. Our results indicate that topical PTN application may alleviate RD symptoms by suppressing oxidative stress and inflammatory signaling and by promoting the healing process. Therefore, PTNs may show great potential as cosmeceuticals for patients with cancer suffering from radiation-induced inflammatory side effects such as RD.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Oxidative Stress/drug effects , Radiodermatitis/drug therapy , Seaweed/chemistry , Skin/drug effects , Tannins/administration & dosage , Wound Healing/drug effects , Administration, Cutaneous , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Disease Models, Animal , Female , Inflammation Mediators/metabolism , Mice, Inbred BALB C , Radiodermatitis/metabolism , Radiodermatitis/pathology , Signal Transduction , Skin/metabolism , Skin/pathology , Tannins/isolation & purification , Time Factors
9.
Int J Mol Sci ; 20(17)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480799

ABSTRACT

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) affords stem cell protection and links microbes to intestinal epithelial regeneration. We investigated whether NOD2 status is associated with crypt survival and intestinal epithelial regeneration independent of microbiota-derived molecules. To assess crypt survival, a clonogenic microcolony assay was performed with 15 Gy of X-ray irradiation. The fractional crypt survival rate (46.0 ± 15.5% vs. 24.7 ± 9.2%, p < 0.01) and fractional EdU-positive crypt survival rate (29.8 ± 14.5% vs. 9.79 ± 4.37%, p = 0.015) were significantly decreased in the NOD2-/- mice compared with the wild-type (WT) mice at 3.5 days after irradiation. To evaluate intestinal epithelial regeneration capability, organoid reconstitution assays were performed. Small bowel crypts of the WT and NOD2-/- mice were isolated and seeded into Matrigel for 3D culture. In the organoid reconstitution assays, the number of organoids formed did not differ between the NOD2-/- and WT mice. Organoid formation ability was also assessed after exposure to 5 Gy irradiation. Organoid formation ability was significantly decreased in the NOD2-/- mice compared with the WT ones after exposure to 5 Gy irradiation (33.2 ± 5.9 vs. 19.7 ± 8.8/well, p < 0.01). NOD2 supports crypt survival after potentially lethal irradiation damage and is associated with intestinal epithelial regeneration.


Subject(s)
Epithelium/pathology , Intestines/pathology , Nod2 Signaling Adaptor Protein/metabolism , Radiation Injuries/pathology , Regeneration , Animals , Apoptosis/radiation effects , Cell Differentiation/radiation effects , Epithelial Cells/pathology , Epithelial Cells/radiation effects , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/deficiency , Organoids/pathology , X-Rays
10.
Int J Mol Sci ; 20(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999572

ABSTRACT

When radiotherapy is applied to the abdomen or pelvis, normal tissue toxicity in the gastrointestinal (GI) tract is considered a major dose-limiting factor. Proton beam therapy has a specific advantage in terms of reduced doses to normal tissues. This study investigated the fundamental differences between proton- and X-ray-induced intestinal injuries in mouse models. C57BL/6J mice were irradiated with 6-MV X-rays or 230-MeV protons and were sacrificed after 84 h. The number of surviving crypts per circumference of the jejunum was identified using Hematoxylin and Eosin staining. Diverse intestinal stem cell (ISC) populations and apoptotic cells were analyzed using immunohistochemistry (IHC) and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay, respectively. The crypt microcolony assay revealed a radiation-dose-dependent decrease in the number of regenerative crypts in the mouse jejunum; proton irradiation was more effective than X-ray irradiation with a relative biological effectiveness of 1.14. The jejunum is the most sensitive to radiations, followed by the ileum and the colon. Both types of radiation therapy decreased the number of radiosensitive, active cycling ISC populations. However, a higher number of radioresistant, reserve ISC populations and Paneth cells were eradicated by proton irradiation than X-ray irradiation, as shown in the IHC analyses. The TUNEL assay revealed that proton irradiation was more effective in enhancing apoptotic cell death than X-ray irradiation. This study conducted a detailed analysis on the effects of proton irradiation versus X-ray irradiation on intestinal crypt regeneration in mouse models. Our findings revealed that proton irradiation has a direct effect on ISC populations, which may result in an increase in the risk of GI toxicity during proton beam therapy.


Subject(s)
Intestines/injuries , Protons/adverse effects , Radiation Injuries/etiology , X-Rays/adverse effects , Animals , Apoptosis/radiation effects , Disease Models, Animal , Dose-Response Relationship, Radiation , Intestines/pathology , Intestines/radiation effects , Jejunum/injuries , Jejunum/pathology , Jejunum/radiation effects , Mice, Inbred C57BL , Radiation Injuries/pathology , Stem Cells/pathology , Stem Cells/radiation effects
11.
Mar Drugs ; 16(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558324

ABSTRACT

Tumor hypoxia is a major mechanism of resistance to radiation therapy (RT), which is associated with poor prognosis in affected cancer patients. Various approaches to treat hypoxic and radioresistant cancers, including pancreatic cancer, have shown limited success. Fucoidan, a polysaccharide from brown seaweed, has antitumor and antiangiogenesis activities. Here, we discuss the development of fucoidan-coated manganese dioxide nanoparticles (Fuco-MnO2-NPs) and testing of the therapeutic potential with RT using pancreatic cancer models. In vitro data showed that Fuco-MnO2-NPs generated oxygen efficiently in the presence of H2O2 and substantially suppressed HIF-1 expression under a hypoxic condition in human pancreatic cancer cells. Fuco-MnO2-NPs reversed hypoxia-induced radioresistance by decreasing clonogenic survival and increasing DNA damage and apoptotic cell death in response to RT. In a BxPC3 xenograft mouse model, the combination treatment with Fuco-MnO2-NPs and RT resulted in a greater tumor growth delay than RT alone. Fucoidan-coated NPs, but not naked ones, further suppressed tumor angiogenesis, as judged by immunohistochemistry data with diminished expression of phosphorylated vascular endothelial growth factor receptor 2 (VEGFR2) and CD31. These data suggest that Fuco-MnO2-NPs may potentiate the effects of RT via dual targeting of tumor hypoxia and angiogenesis, and they are of great clinical potential in the treatment of hypoxic, radioresistant pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Pancreatic Neoplasms/therapy , Polysaccharides/pharmacology , Tumor Hypoxia/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Chemoradiotherapy/methods , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Manganese Compounds/chemistry , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Oxides/chemistry , Pancreatic Neoplasms/pathology , Polysaccharides/therapeutic use , Radiation Tolerance/drug effects , Seaweed/chemistry , Treatment Outcome , Tumor Hypoxia/radiation effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
12.
Sci Rep ; 8(1): 7597, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29748578

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
Sci Rep ; 7(1): 14986, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118323

ABSTRACT

Although efficacy of combined histone deacetylase (HDAC) inhibitors and conventional photon radiotherapy is being tested in clinical trials, their combined effect with proton beam radiotherapy has yet to be determined. Here, we compared combined effect of valproic acid (VPA), a class I and II HDAC inhibitor and antiepileptic drug with proton and photon irradiation in hepatocellular carcinoma (HCC) cells in vitro and in vivo. We found that VPA sensitized more Hep3B cells to proton than to photon irradiation. VPA prolonged proton-induced DNA damage and augmented proton-induced apoptosis. In addition, VPA further increased proton-induced production of intracellular reactive oxygen species and suppressed expression of nuclear factor erythroid-2-related factor 2 (NRF2), a key transcription factor regulating antioxidant response. Downregulation of NRF2 by siRNA transfection increased proton-induced apoptotic cell death, supporting NRF2 as a target of VPA in radiosensitization. In Hep3B tumor xenograft models, VPA significantly enhanced proton-induced tumor growth delay with increased apoptosis and decreased NRF2 expression in vivo. Collectively, our study highlights a proton radiosensitizing effect of VPA in HCC cells. As NRF2 is an emerging prognostic marker contributing to radioresistance in HCC, targeting NRF2 pathway may impact clinical outcome of proton beam radiotherapy.


Subject(s)
Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , NF-E2-Related Factor 2/metabolism , Proton Therapy , Radiation-Sensitizing Agents/pharmacology , Valproic Acid/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/radiation effects , Down-Regulation , Female , Humans , Liver Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , NF-E2-Related Factor 2/genetics , RNA, Small Interfering/metabolism , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/therapeutic use , Treatment Outcome , Valproic Acid/therapeutic use , Xenograft Model Antitumor Assays
14.
Data Brief ; 12: 97-102, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28409177

ABSTRACT

The data presented in this article are related to the research article entitled "Retinoic acid induces hypersegmentation and enhances cytotoxicity of neutrophils against cancer cells" (S. Shrestha, S.Y. Kim, Y.J. Young, J.K. Kim, J.M. Lee, M. Shin, D.K. Song, C.W. Hong, 2017) [1]. This article complements the potential of retinoic acid to induce changes in effector function of human neutrophils. Here the datasets describe the rate of apoptosis, changes in numbers of nuclear lobes, and the expressions of surface markers in human neutrophils in presence or absence of retinoic acid. The tumor growth in recipient mice with adoptive transfer of retinoic acid-treated neutrophils was evaluated. The included data is made publicly available to criticism and extended analysis.

15.
Am J Respir Crit Care Med ; 196(5): 577-589, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28358992

ABSTRACT

RATIONALE: Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. OBJECTIVES: We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. METHODS: Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. MEASUREMENTS AND MAIN RESULTS: Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. CONCLUSIONS: These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.


Subject(s)
Autophagy/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Pneumonia/immunology , Sepsis/immunology , Sepsis/physiopathology , Aged , Animals , Autophagy/physiology , Community-Acquired Infections/immunology , Community-Acquired Infections/physiopathology , Disease Models, Animal , Female , Fluorescent Antibody Technique , Humans , Male , Mice , Mice, Inbred BALB C , Neutrophils/physiology , Pneumonia/physiopathology , Prospective Studies
16.
Immunol Lett ; 182: 24-29, 2017 02.
Article in English | MEDLINE | ID: mdl-28065603

ABSTRACT

Hypersegmentation of nuclei is considered a distinct characteristic of the antitumoral phenotype of neutrophils. Retinoic acid, a metabolite of retinol, reorganizes and induces segmentation of the nucleus during the differentiation of neutrophils. However, the role of retinoic acid in the phenotype polarization of neutrophils has not been fully established. Here, we investigated the effect of retinoic acid on phenotype polarization of neutrophils. Retinoic acid-induced the hypersegmentation of human neutrophils via retinoic acid receptors and mTOR pathways. Retinoic acid-induced hypersegmented neutrophils enhanced neutrophil extracellular traps (NETs) formation in response to phorbol-12-myristate 13-acetate (PMA) and fMLP (N-Formylmethionine-leucyl-phenylalanine) stimulation, and increased cytotoxicity against various tumor cells. Moreover, retinoic acid treatment attenuated tumor growth in a murine model of tumor. Taken together, these results suggests that retinoic acid induces the phenotype polarization of neutrophils to exert antitumor effects.


Subject(s)
Cytotoxicity, Immunologic/drug effects , Leukocyte Disorders/chemically induced , Neoplasms/immunology , Neoplasms/pathology , Neutrophils/drug effects , Neutrophils/immunology , Tretinoin/pharmacology , Animals , Extracellular Traps/drug effects , Extracellular Traps/immunology , Female , Humans , Leukocyte Disorders/immunology , Leukocyte Disorders/metabolism , Mice , Neoplasms/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Reactive Oxygen Species , Receptors, Retinoic Acid/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
17.
Radiat Oncol J ; 34(3): 223-229, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27609109

ABSTRACT

PURPOSE: This study is to investigate the effect of captopril when combined with irradiation. MATERIALS AND METHODS: 4T1 (mouse mammary carcinoma) cells were injected in the right hind leg of Balb/c mice. Mice were randomized to four groups; control (group 1), captopril-treated (group 2), irradiated (group 3), irradiated and captopril-treated concurrently (group 4). Captopril was administered by intraperitoneal injection (10 mg/kg) daily and irradiation was delivered on the tumor-bearing leg for 15 Gy in 3 fractions. Surface markers of splenic neutrophils (G-MDSCs) and intratumoral neutrophils (tumor-associated neutrophils [TANs]) were assessed using flow cytometry and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 alpha (HIF-1α) of tumor was evaluated by immunohistochemical (IHC) staining. RESULTS: The mean tumor volumes (±standard error) at the 15th day after randomization were 1,382.0 (±201.2) mm3 (group 1), 559.9 (±67.8) mm3 (group 3), and 370.5 (± 48.1) mm3 (group 4), respectively. For G-MDSCs, irradiation reversed decreased expression of CD101 from tumor-bearing mice, and additional increase of CD101 expression was induced by captopril administration. Similar tendency was observed in TANs. The expression of tumor-necrosis factor-associated molecules, CD120 and CD137, are increased by irradiation in both G-MDSCs and TANs. Further increment was observed by captopril except CD120 in TANs. For IHC staining, VEGF and HIF-1α positivity in tumor cells were decreased when treated with captopril. CONCLUSION: Captopril is suggested to have additional effect when combined to irradiation in a murine tumor model by modulation of MDSCs and angiogenesis.

18.
Oncoimmunology ; 5(1): e1067744, 2016.
Article in English | MEDLINE | ID: mdl-26942086

ABSTRACT

Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...