Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798313

ABSTRACT

Dietary protein restriction induces adaptive changes in food preference, increasing protein consumption over carbohydrates or fat. We investigated whether motivation and reward signaling underpin these preferences. In an operant task, protein-restricted male mice increased their responding for liquid protein rewards, but not carbohydrate, fat, or sweet rewards. The protein restriction-induced increase in operant responding for protein was absent in Fgf21-KO mice and mice with neuron-specific deletion of the FGF21 co-receptor beta-Klotho (KlbCam2ka) mice. Fiber photometry recording of VTA dopamine neurons revealed that oral delivery of maltodextrin triggered a larger activation of dopamine neurons as compared to casein in control-fed mice, while casein produced a larger response in protein-restricted mice. This restriction-induced shift in nutrient-specific VTA dopamine signaling was lost in Fgf21-KO mice. These data demonstrate that FGF21 acts in the brain to induce a protein-specific appetite by specifically enhancing the reward value of protein-containing foods and the motivation to consume them.

2.
Neuropharmacology ; 255: 110010, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38797244

ABSTRACT

Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".


Subject(s)
Eating , Fibroblast Growth Factors , Food Preferences , Fibroblast Growth Factors/metabolism , Animals , Food Preferences/physiology , Eating/physiology , Humans , Nutrients , Dietary Proteins/administration & dosage , Adaptation, Physiological/physiology , Diet, Protein-Restricted , Brain/metabolism , Brain/physiology
3.
Biochem Biophys Res Commun ; 688: 149164, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37951155

ABSTRACT

A glucagon-like peptide 1 receptor agonist (GLP-1 RA) semaglutide was approved for the treatment of obesity by the Food and Drug Administration. However, it can cause gastrointestinal events at high doses, limiting its broader use. Combining drugs with multiple mechanisms of action could enhance the weight-reducing effects while minimizing side effects. To this end, we investigated the combined effects of semaglutide and avasimibe, an acyl-CoA:cholesterol acyltransferase 1 (ACAT1) inhibitor, on weight reduction in diet-induced obesity mice. Two cohorts of mice were used: In cohort 1, mice were fed a high-fat (HF) diet for 12 weeks and then randomly assigned to the vehicle, avasimibe [10 mg/kg body weight (BW)], semaglutide (0.4 mg/kg BW), or combination groups. The drugs were administered via subcutaneous (sc) injections on a daily basis. In cohort 2, mice were fed an HF diet for 8 weeks and randomly assigned to the same four groups, but avasimibe was administered at a dose of 20 mg/kg BW, and the drugs were administered every 3 days. In cohort 1, semaglutide initially reduced food intake initially, but this effect was diminished with prolonged administration. Avasimibe, on the other hand, did not affect food intake but prevented weight gain to a lesser extent than semaglutide. Importantly, the combination treatment resulted in the greatest percentage of body weight reduction, along with lower plasma glucose and leptin levels compared to the semaglutide single-treatment group. Cohort 2 confirmed that the superior weight loss in the combination group compared to the other three groups was largely due to a significant reduction in fat mass. Histological analysis of inguinal adipose tissue showed smaller adipocyte size across all treatment groups compared to the vehicle group, with no significant differences among the treatment groups. Collectively, these findings suggest combining semaglutide and avasimibe could be an effective approach to weight management.


Subject(s)
Diabetes Mellitus, Type 2 , Sterol O-Acyltransferase , Humans , Mice , Animals , Rodentia , Acyltransferases , Acyl Coenzyme A , Obesity/drug therapy , Obesity/etiology , Diet , Weight Loss , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy
4.
Biochem Biophys Res Commun ; 629: 40-46, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36099783

ABSTRACT

Obesity is associated with a spectrum of nonalcoholic fatty liver disease (NAFLD) which is characterized by steatosis. Prolonged fat deposition aggravates liver dysfunctions leading to an advanced form of NAFLD such as steatohepatitis and cirrhosis. As liver function in the postprandial state is critical for macronutrient metabolism and energy homeostasis, we sought to determine the differences in protein complex profiles in lean and fatty livers in the postprandial state. Protein complex profiling is of interest as proteins often do not function alone and the information on the interactions may reveal novel etiology of NAFLD, which is currently limited compared with proteome profiles or RNA-sequencing profiles. To this end, we fractionated liver lysates using size-exclusion chromatography (SEC) and analyzed each fraction using untargeted LC-MS/MS. We identified 1172 proteins that were discovered in lean and fatty livers, and their elution profiles were compared. We found that the majority of liver proteins were present as putative complexes. Also, the fatty liver protein elution profile showed great conservations as lean liver despite the metabolic disease state. Yet, we discovered a few proteins that showed different elution patterns in the fatty liver, including Acadm, Aldh1a7, Aldh1a1, Akr1a1, Eif3l, Fkbp2, G6pdx, Gm20441, Hao1, Pcna, Pkm, Ppif, Prdx4, Stmn1, Tagln, Tubb4b, Ubqln2, and Usp14, which may be involved in high fat diet-induced alterations of protein oligomerization and hepatic functions. Overall, our protein complex profiling could expand our understanding of hepatic abnormalities that cannot be uncovered by simple quantitation of protein expression.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy-Related Proteins/metabolism , Chromatography, Liquid , Diet, High-Fat/adverse effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proteome/metabolism , RNA/metabolism , Tandem Mass Spectrometry
5.
Cells ; 11(14)2022 07 18.
Article in English | MEDLINE | ID: mdl-35883674

ABSTRACT

Extracellular vesicles (EVs) are a highly heterogeneous population of membranous particles that are secreted by almost all types of cells across different domains of life, including plants. In recent years, studies on plant-derived nanovesicles (PDNVs) showed that they could modulate metabolic reactions of the recipient cells, affecting (patho)physiology with health benefits in a trans-kingdom manner. In addition to its bioactivity, PDNV has advantages over conventional nanocarriers, making its application promising for therapeutics delivery. Here, we discuss the characteristics of PDNV and highlight up-to-date pre-clinical and clinical evidence, focusing on therapeutic application.


Subject(s)
Extracellular Vesicles , Functional Food , Drug Delivery Systems , Extracellular Vesicles/metabolism , Humans , Plants, Edible
6.
Cells ; 11(7)2022 03 30.
Article in English | MEDLINE | ID: mdl-35406736

ABSTRACT

Obesity caused by overnutrition is a major risk factor for non-alcoholic fatty liver disease (NAFLD). Several lipid intermediates such as fatty acids, glycerophospholipids and sphingolipids are implicated in NAFLD, but detailed characterization of lipids and their functional links to proteome and phosphoproteome remain to be elucidated. To characterize this complex molecular relationship, we used a multi-omics approach by conducting comparative proteomic, phoshoproteomic and lipidomic analyses of high fat (HFD) and low fat (LFD) diet fed mice livers. We quantified 2447 proteins and 1339 phosphoproteins containing 1650 class I phosphosites, of which 669 phosphosites were significantly different between HFD and LFD mice livers. We detected alterations of proteins associated with cellular metabolic processes such as small molecule catabolic process, monocarboxylic acid, long- and medium-chain fatty acid, and ketone body metabolic processes, and peroxisome organization. We observed a significant downregulation of protein phosphorylation in HFD fed mice liver in general. Untargeted lipidomics identified upregulation of triacylglycerols, glycerolipids and ether glycerophosphocholines and downregulation of glycerophospholipids, such as lysoglycerophospholipids, as well as ceramides and acylcarnitines. Analysis of differentially regulated phosphosites revealed phosphorylation dependent deregulation of insulin signaling as well as lipogenic and lipolytic pathways during HFD induced obesity. Thus, this study reveals a molecular connection between decreased protein phosphorylation and lipolysis, as well as lipid-mediated signaling in diet-induced obesity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Fatty Acids/metabolism , Glycerophospholipids , Lipid Metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Phosphorylation , Proteomics , Triglycerides/metabolism
7.
Metabolism ; 123: 154861, 2021 10.
Article in English | MEDLINE | ID: mdl-34371065

ABSTRACT

BACKGROUND/OBJECTIVES: Acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyze the formation of cholesteryl ester (CE) from free cholesterol to regulate intracellular cholesterol homeostasis. Despite the well-documented role of ACATs in hypercholesterolemia and their emerging role in cancer and Alzheimer's disease, the role of ACATs in adipose lipid metabolism and obesity is poorly understood. Herein, we investigated the therapeutic potential of pharmacological inhibition of ACATs in obesity. METHODS: We administrated avasimibe, an ACAT inhibitor, or vehicle to high-fat diet-induced obese (DIO) mice via intraperitoneal injection and evaluated adiposity, food intake, energy expenditure, and glucose homeostasis. Moreover, we examined the effect of avasimibe on the expressions of the genes in adipogenesis, lipogenesis, inflammation and adipose pathology in adipose tissue by real-time PCR. We also performed a pair feeding study to determine the mechanism for body weight lowering effect of avasimibe. RESULTS: Avasimibe treatment markedly decreased body weight, body fat content and food intake with increased energy expenditure in DIO mice. Avasimibe treatment significantly lowered blood levels of glucose and insulin, and improved glucose tolerance in obese mice. The beneficial effects of avasimibe were associated with lower levels of adipocyte-specific genes in adipose tissue and the suppression of food intake. Using a pair-feeding study, we further demonstrated that avasimibe-promoted weight loss is attributed mainly to the reduction of food intake. CONCLUSIONS: These results indicate that avasimibe ameliorates obesity and its-related insulin resistance in DIO mice through, at least in part, suppression of food intake.


Subject(s)
Acyl Coenzyme A/antagonists & inhibitors , Energy Intake , Enzyme Inhibitors/pharmacology , Insulin Resistance , Obesity/prevention & control , Sterol O-Acyltransferase/antagonists & inhibitors , Animals , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL
8.
Nutr Res ; 80: 66-77, 2020 08.
Article in English | MEDLINE | ID: mdl-32698053

ABSTRACT

Obesity is often accompanied by metabolic changes in adipocytes that are closely associated with metabolic disease. Although high sugar consumption contributes to obesity, it may also directly affect adipocytes by increasing the rate of glycolysis and formation of the glycolytic by-product methylglyoxal (MG). MG is a reactive dicarbonyl that irreversibly damages proteins and other cellular components. Although the accumulation of MG is clinically associated with hyperglycemia and diabetic complications, a better understanding of how proteins are regulated by MG is needed to evaluate its role in the pathogenesis of metabolic disease. Because adipocytes rely heavily on glycolysis for glucose disposal, we hypothesized that prolonged MG treatment at nontoxic concentrations would impact the landscape of proteins involved in glucose metabolism. To test this hypothesis, we treated 3T3-L1 adipocytes with MG (100 µmol/L) and used comparative proteomics to assess the effects. We identified 25 differentially expressed proteins in adipocytes treated with MG compared to the control. Our results suggested that MG induced metabolic changes typically associated with aerobic glycolysis, including a lowered expression of proteins involved in oxidative metabolism and increased expression of the glycolytic enzymes L-lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. The detection of increased lactate secreted into the culture media of adipocytes treated with MG further supported these findings, as did gene expression analysis. In summary, these results indicate MG as a metabolic contributor to aerobic glycolysis in adipocytes, a potential adaptive response to increased glucose flux which over time could lead to permanent metabolic changes.


Subject(s)
Adipocytes/metabolism , Glycolysis/drug effects , Proteome/metabolism , Pyruvaldehyde/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Aerobiosis , Animals , Cell Survival , Gene Expression , Glucose/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , L-Lactate Dehydrogenase/metabolism , Mice , Proteomics , Reactive Oxygen Species/metabolism
9.
J Biol Chem ; 294(39): 14394-14405, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31399511

ABSTRACT

Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility. Acsl6-/- males were severely subfertile with smaller testes, reduced cauda epididymal sperm counts, germ cell loss, and disorganization of the seminiferous epithelium. Total fatty acid profiling of Acsl6-/- testes revealed reduced DHA and increased ω-6 arachidonic acid, a fatty acid profile also reflected in phospholipid composition. Strikingly, lipid imaging demonstrated spatial redistribution of phospholipids in Acsl6-/- testes. Arachidonic acid-containing phospholipids were predominantly interstitial in control testes but diffusely localized across Acsl6-/- testes. In control testes, DHA-containing phospholipids were predominantly within seminiferous tubules, which contain Sertoli cells and spermatogenic cells but relocalized to the interstitium in Acsl6-/- testes. Taken together, these data demonstrate that ACSL6 is an initial driving force for germ cell DHA enrichment and is required for normal spermatogenesis and male fertility.


Subject(s)
Coenzyme A Ligases/genetics , Fatty Acids, Omega-6/metabolism , Infertility, Male/genetics , Seminiferous Tubules/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Phospholipids/metabolism , Seminiferous Tubules/cytology , Spermatogenesis
10.
Proc Natl Acad Sci U S A ; 115(49): 12525-12530, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30401738

ABSTRACT

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is highly abundant in the brain and confers protection against numerous neurological diseases, yet the fundamental mechanisms regulating the enrichment of DHA in the brain remain unknown. Here, we have discovered that a member of the long-chain acyl-CoA synthetase family, Acsl6, is required for the enrichment of DHA in the brain by generating an Acsl6-deficient mouse (Acsl6-/-). Acsl6 is highly enriched in the brain and lipid profiling of Acsl6-/- tissues reveals consistent reductions in DHA-containing lipids in tissues highly abundant with Acsl6. Acsl6-/- mice demonstrate motor impairments, altered glutamate metabolism, and increased astrogliosis and microglia activation. In response to a neuroinflammatory lipopolysaccharide injection, Acsl6-/- brains show similar increases in molecular and pathological indices of astrogliosis compared with controls. These data demonstrate that Acsl6 is a key mediator of neuroprotective DHA enrichment in the brain.


Subject(s)
Brain/enzymology , Coenzyme A Ligases/metabolism , Docosahexaenoic Acids/metabolism , Animals , Brain/metabolism , Coenzyme A Ligases/genetics , Gene Expression Regulation , Gene Expression Regulation, Enzymologic , Male , Mice , Mice, Knockout , Microglia , Motor Activity
SELECTION OF CITATIONS
SEARCH DETAIL
...