Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
ACS Omega ; 8(37): 34152-34159, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744798

ABSTRACT

Vanadium-based catalysts have been commercially used in selective catalytic reduction (SCR), owing to their high catalytic activity and effectiveness across a wide temperature range; however, their catalytic efficiency decreases at lower temperatures under exposure to SOX. This decrease is largely due to ammonium sulfate generation on the catalyst surface. To overcome this limitation, we added ammonium nitrate to the V2O5-WO3/TiO2 catalyst, producing a V2O5-WO3/TiO2 catalyst with nitrate functional groups. With this approach, we found that it was possible to adjust the amount of these functional groups by varying the amount of ammonium nitrate. Overall, the resultant nitrate V2O5-WO3/TiO2 catalyst has large quantities of NO3- and chemisorbed oxygen, which improves the density of Brønsted and Lewis acid sites on the catalyst surface. Furthermore, the nitrated V2O5-WO3/TiO2 catalyst has a high NOX removal efficiency and N2 selectivity at low temperatures (i.e., 300 °C); this is because NO3- and chemisorbed oxygen, generated by nitrate treatment, facilitated the occurrence of a fast SCR reaction. The approach outlined in this study can be applied to a wide range of SCR catalysts, allowing for the development of more, low-temperature SCR catalysts.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558208

ABSTRACT

Argyrodite solid electrolytes such as lithium phosphorus sulfur chloride (Li6PS5Cl) have recently attracted great attention due to their excellent lithium-ion transport properties, which are applicable to all-solid-state lithium batteries. In this study, we report the improved ionic conductivity of an argyrodite solid electrolyte, Li6PS5Cl, in all-solid-state lithium batteries via the co-doping of chlorine (Cl) and aluminum (Al) elements. Electrochemical analysis was conducted on the doped argyrodite structure of Li6PS5Cl, which revealed that the substitution of cations and anions greatly improved the ionic conductivity of solid electrolytes. The ionic conductivity of the Cl- and Al-doped Li6PS5Cl (Li5.4Al0.1PS4.7Cl1.3) electrolyte was 7.29 × 10-3 S cm-1 at room temperature, which is 4.7 times higher than that of Li6PS5Cl. The Arrhenius plot of the Li5.4Al0.1PS4.7Cl1.3 electrolyte further elucidated its low activation energy at 0.09 eV.

3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362098

ABSTRACT

We demonstrated highly active and durable hybrid catalysts (HCs) composed of small reduced graphene oxide (srGO) and carbon nanotubes (CNTs) for use as oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells. Pt/srGO and Pt/CNTs were prepared by loading Pt nanoparticles onto srGO and CNTs using a polyol process, and HCs with different Pt/CNT and Pt/srGO ratios were prepared by mechanically mixing the two components. The prepared HCs consisted of Pt/CNTs well dispersed on Pt/srGO, with catalyst HC55, which was prepared using Pt/srGO and Pt/CNTs in a 5:5 ratio, exhibiting excellent oxygen reduction performance and high stability over 1000 cycles of the accelerated durability test (ADT). In particular, after 1000 cycles of the ADT, the normalized electrochemically active surface area of Pt/HC55 decreased by 11.9%, while those of Pt/srGO and Pt/C decreased by 21.2% and 57.6%, respectively. CNTs have strong corrosion resistance because there are fewer defect sites on the surface, and the addition of CNTs in rGO further improved the durability and the electrical conductivity of the catalyst. A detailed analysis of the structural and electrochemical properties of the synthesized catalysts suggested that the synergetic effects of the high specific surface area of srGO and the excellent electrical conductivity of CNTs were responsible for the enhanced efficiency and durability of the catalysts.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Protons , Platinum/chemistry , Oxygen/chemistry
4.
Article in English | MEDLINE | ID: mdl-35839325

ABSTRACT

Hydrogen production, which is in the spotlight as a promising eco-friendly fuel, and the need for inexpensive and accurate electronic devices in the biochemistry field are important emerging technologies. However, the use of electrocatalytic devices based on expensive noble metal catalysts limits commercial applications. In recent years, to improve performance and reduce cost, electrocatalysts based on cheaper copper or nickel materials have been investigated for the non-enzymatic glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). In this study, we demonstrate a facile and easy electrochemical method of forming a cheap nickel copper double hydroxide (NiCu-DH) electrocatalyst deposited onto a three-dimensional (3D) CuNi current collector, which can effectively handle two different reactions due to its high activity for both the GOR and the HER. The as-prepared electrode has a structure comprising abundant 3D-interconnected porous dendritic walls for easy access of the electrolyte ions and highly conductive networks for fast electron transfer; additionally, it provides numerous electroactive sites. The synergistic combination of the dendritic 3D-CuNi with its abundant active sites and the self-made NiCu-DH with its excellent electrocatalytic activity toward the oxidation of glucose and HER enables use of the catalyst for both reactions. The as-prepared electrode as a glucose sensor exhibits an outstanding glucose detection limit value (0.4 µM) and a wide detection range (from 0.4 µM to 1.4 mM) with an excellent sensitivity of 1452.5 µA/cm2/mM. The electrode is independent of the oxygen content and free from chloride poisoning. Furthermore, the as-prepared electrode also requires a low overpotential of -180 mV versus reversible hydrogen electrode to yield a current density of 10 mA/cm2 with a Tafel slope of 73 mV/dec for the HER. Based on this performance, this work introduces a new paradigm for exploring cost-effective bi-functional catalysts for the GOR and HER.

5.
Int J Mol Sci ; 22(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34830182

ABSTRACT

We demonstrated highly efficient oxygen reduction catalysts composed of uniform Pt nanoparticles on small, reduced graphene oxides (srGO). The reduced graphene oxide (rGO) size was controlled by applying ultrasonication, and the resultant srGO enabled the morphological control of the Pt nanoparticles. The prepared catalysts provided efficient surface reactions and exhibited large surface areas and high metal dispersions. The resulting Pt/srGO samples exhibited excellent oxygen reduction performance and high stability over 1000 cycles of accelerated durability tests, especially the sample treated with 2 h of sonication. Detailed investigations of the structural and electrochemical properties of the resulting catalysts suggested that both the chemical functionality and electrical conductivity of these samples greatly influence their enhanced oxygen reduction efficiency.


Subject(s)
Graphite/chemistry , Metal Nanoparticles/chemistry , Oxygen/chemistry , Platinum/chemistry , Algorithms , Catalysis , Electric Conductivity , Electrochemical Techniques/methods , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Structure , Oxidation-Reduction , Particle Size , Spectrum Analysis, Raman
6.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34685118

ABSTRACT

Selective catalytic reduction (SCR) is the most efficient NOX removal technology, and the vanadium-based catalyst is mainly used in SCR technology. The vanadium-based catalyst showed higher NOX removal performance in the high-temperature range but catalytic efficiency decreased at lower temperatures, following exposure to SOX because of the generation of ammonium sulfate on the catalyst surface. To overcome these limitations, we coated an NH4+ layer on a vanadium-based catalyst. After silane coating the V2O5-WO3/TiO2 catalyst by vapor evaporation, the silanized catalyst was heat treated under NH3 gas. By decomposing the silane on the surface, an NH4+ layer was formed on the catalyst surface through a substitution reaction. We observed high NOX removal efficiency over a wide temperature range by coating an NH4+ layer on a vanadium-based catalyst. This layer shows high proton conductivity, which leads to the reduction of vanadium oxides and tungsten oxide; additionally, the NOX removal performance was improved over a wide temperature range. These findings provide a new mothed to develop SCR catalyst with high efficiency at a wide temperature range.

7.
Nanomaterials (Basel) ; 11(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070897

ABSTRACT

In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts' crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C-450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.

8.
Glob Chall ; 4(10): 2000009, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33033625

ABSTRACT

Membrane-based technologies are attractive for remediating oily wastewater because they are relatively energy-efficient and are applicable to a wide range of industrial effluents. For complete treatment of oily wastewater, removing dissolved contaminants from the water phase is typically followed by adsorption onto an adsorbent, which complicates the process. Here, an in-air superhydrophilic and underwater superoleophobic membrane-based continuous separation of surfactant-stabilized oil-in-water emulsions and in situ decontamination of water by visible-light-driven photocatalytic degradation of dissolved organic contaminants is reported. The membrane is fabricated by utilizing a thermally sensitized stainless steel mesh coated with visible light absorbing iron-doped titania nanoparticles. Post annealing of the membrane can enhance the adhesion of nanoparticles to the membrane surface by formation of a bridge between them. An apparatus that enables continuous separation of surfactant-stabilized oil-in-water emulsion and in situ photocatalytic degradation of dissolved organic matter in the water-rich permeate upon irradiation of visible light on the membrane surface with greater than 99% photocatalytic degradation is developed. The membrane demonstrates the recovery of its intrinsic water-rich permeate flux upon continuous irradiation of light after being contaminated with oil. Finally, continuous oil-water separation and in situ water decontamination is demonstrated by photocatalytically degrading model toxins in water-rich permeate.

9.
RSC Adv ; 10(28): 16700-16708, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498861

ABSTRACT

Oxygen functionalized carbon nanotubes synthesized by surface acid treatment were used to improve the dispersion properties of active materials for catalysis. Carbon nanotubes have gained attention as a support for active materials due to their high specific surface areas (400-700 m2 g-1) and chemical stability. However, the lack of surface functionality causes poor dispersion of active materials on carbon nanotube supports. In this study, oxygen functional groups were prepared on the surface of carbon nanotubes as anchoring sites for decoration with catalytic nanoparticles. The oxygen functional groups were prepared through a chemical acid treatment using sulfuric acid and nitric acid, and the amount of functional groups was controlled by the reaction time. Vanadium, tungsten, and titanium oxides as catalytic materials were dispersed using an impregnation method on the synthesized carbon nanotube surfaces. Due to the high density of oxygen functional groups, the catalytic nanoparticles were well dispersed and reduced in size on the surface of the carbon nanotube supports. The selective catalytic reduction catalyst with the oxygen functionalized carbon nanotube support exhibited enhanced NO x removal efficiency of over 90% at 350-380 °C which is the general operating temperature range of catalysis in power plants.

10.
Hum Brain Mapp ; 40(8): 2336-2346, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30648326

ABSTRACT

A number of previous studies revealed the importance of the frontoparietal network for attention and preparatory top-down control. Here, we investigated the theta (7-9 Hz) coherence of the right frontoparietal networks to explore the differences in connectivity changes for the right frontoparietal regions during spatial attention (i.e., attention to a specific location rather than a specific feature) and nonspatial attention (i.e., attention to a specific feature rather than a specific location) tasks. The theta coherence in both tasks was primarily maintained at a preparatory state, decreases after stimulus onset, and recovers to the level of the preparatory state after the response time. However, the theta coherence of the frontoparietal network during spatial attention was immediately maintained after cue-onset, whereas for the case of nonspatial attention, it was immediately decreased after cue-onset. In addition, the connectivity of the right frontoparietal network, including the middle frontal gyrus and superior parietal lobe, were significantly higher for spatial attention rather than for nonspatial attention, suggesting that the dorsal parts of right frontoparietal network are more engaged in spatial-specific attention from the preparatory state. These findings also suggest that these two attention systems involve the use of different regional connectivity patterns, not only in the cognitive state, but in the preparatory state as well.


Subject(s)
Attention/physiology , Electrocorticography , Frontal Lobe/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Space Perception/physiology , Theta Rhythm/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL