Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Prev Med ; 26(1): 91, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34521354

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is becoming a global health problem. Bisphenol A (BPA), one of most widely used environmental chemicals, is suspected to be a contributor to the development NAFLD. This study was performed to examine the relationship between human BPA levels and risk of NAFLD. METHODS: The data (n = 3476 adults: 1474 men and 2002 women) used in this study were obtained from the Korean National Environmental Health Survey III (2015-2017). BPA levels were measured in urine samples. NAFLD was defined using hepatic steatosis index after exclusion of other causes of hepatic diseases. RESULTS: There was a significant linear relationship between the elevated urinary BPA concentrations and risk of NAFLD. In a univariate analysis, odds ratio (OR) of the highest quartile of urinary BPA level was 1.47 [95% confidence interval (CI) 1.11-1.94] compared to the lowest quartile. After adjusted with covariates, the ORs for NAFLD in the third and fourth quartiles were 1.31 [95% CI 1.03-1.67] and 1.32 [95% CI 1.03-1.70], respectively. CONCLUSIONS: Urinary BPA levels are positively associated with the risk of NAFLD in adults. Further experimental studies are needed to understand the molecular mechanisms of BPA on NAFLD prevalence.


Subject(s)
Benzhydryl Compounds/urine , Non-alcoholic Fatty Liver Disease/epidemiology , Phenols/urine , Asian People , Environmental Exposure , Environmental Health , Female , Health Surveys , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/chemically induced , Republic of Korea/epidemiology
2.
Article in English | MEDLINE | ID: mdl-34199270

ABSTRACT

Mercury is widely distributed in the environment, and a plausible association between mercury exposure and hepatic damage has been reported. Non-alcoholic fatty liver disease (NAFLD), which comprises a spectrum of liver diseases, has recently been recognized in non-obese subjects. However, there have been no studies on the relationship between internal mercury levels and NAFLD in non-obese individuals. Therefore, we investigated the association between blood mercury levels and NAFLD in non-obese subjects. Cross-sectional data (n = 5919) were obtained from the Korean National Environmental Health Survey (2012-2014). NAFLD was defined using the hepatic steatosis index (HSI). Blood mercury levels were log-transformed and divided into quartiles based on a weighted sample distribution. The association between blood mercury levels and NAFLD was analyzed using a multivariate logistic analysis after body mass index stratification. The geometric mean of blood mercury in the overweight group was significantly higher than that of the non-obese group (p < 0.001). The weighted frequencies of patients with NAFLD based on the HSI were 3.0-7.2% for the non-obese subjects and 52.3-63.2% for the overweight subjects. In the multivariate analysis, blood mercury levels were positively associated with NAFLD for both the overweight and non-obese groups (all p for trend < 0.001). Increased blood mercury levels are closely associated with NAFLD. In particular, mercury could be a risk factor for NAFLD in the non-obese population.


Subject(s)
Mercury , Non-alcoholic Fatty Liver Disease , Body Mass Index , Cross-Sectional Studies , Environmental Health , Humans , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/epidemiology , Republic of Korea/epidemiology
3.
Article in English | MEDLINE | ID: mdl-34199698

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Recent experimental studies suggested that phthalates might induce NAFLD. Therefore, this study aimed to investigate the relationship between phthalates metabolites and NAFLD in the human population. This cross-sectional analysis was performed using data from the Korean National Environmental Health Survey II (2012-2014) among Korean adults (n = 5800). NAFLD was diagnosed using the hepatic steatosis index (HSI) in the absence of other causes of chronic liver diseases. Among the participants (mean age 46 years, 47.5% male), the prevalence of NAFLD was associated with urinary levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-benzyl phthalate (MBzP), and mono-n-butyl phthalate (MnBP) compared to the reference group. In the multivariate model, the odds ratios (ORs), 95% confidence interval (CI) for NAFLD were 1.33 (1.00-1.78) and 1.39 (1.00-1.92) in the 3rd and 4th quartile of MEHHP, respectively. Based on the study findings, high levels of urinary phthalates are associated with the prevalence of NAFLD in Korean adults. Further investigation is required to elucidate the causal relationship.


Subject(s)
Environmental Pollutants , Non-alcoholic Fatty Liver Disease , Phthalic Acids , Adult , Cross-Sectional Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Health , Female , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/epidemiology , Republic of Korea/epidemiology
4.
Water Res ; 186: 116380, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32919139

ABSTRACT

Filamentous fungi are believed to remove a wide range of environmental xenobiotics due to their characteristically non-specific catabolic metabolisms. Nonetheless, irregular hyphal spreading can lead to clogging problems in treatment facilities and the dependence of pollutant bioavailability on hyphal surface features severely limits their applicability in water treatment. Here, we propose a scalable and facile methodology to structurally modify fungal hyphae, allowing for both the maximization of pollutant sorption and fungal pellet morphology self-regulation. Halloysite-doped mycelium architectures were efficiently constructed by dipping Aspergillus fumigatus pellets in halloysite nanotube-dispersed water. Ultrastructure analyses using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy revealed that the nanotubes were mainly attached to the outer surface of the pellets. Fungal viability and exoenzyme production were hardly affected by the halloysites. Notably, nanotube doping appeared to be extremely robust given that detachments rarely occurred even in high concentrations of organic solvents and salt. It was also demonstrated that the doped halloysites weakened hyphal growth-driven gelation, thus maintaining sphere-like pellet structures. The water treatment potential of the hybrid fungal mycelia was assessed through both cationic toxic organic/inorganic-contaminated water and real dye industry wastewater clean-ups. Aided by the mesoporous halloysite sites on their surface, the removal abilities of the hybrid structures were significantly enhanced. Moreover, inherent low sorption ability of HNT for heavy metals was found to be overcome by the aid of fungal mycelia. Finally, universal feature of the dipping-based doping way was confirmed by using different filamentous fungi. Given that traditional approaches to effectively implement fungus-based water treatment are based mostly on polymer-based immobilization techniques, our proposed approach provides a novel and effective alternative via simple doping of living fungi with environmentally-benign clays such as halloysite nanotubes.


Subject(s)
Nanotubes , Water Purification , Ceramics , Clay , Hyphae
SELECTION OF CITATIONS
SEARCH DETAIL
...