Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Sci Rep ; 14(1): 14558, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914666

ABSTRACT

Plants offer a cost-effective and scalable pharmaceutical platform devoid of host-derived contamination risks. However, their medical application is complicated by the potential for acute allergic reactions to external proteins. Developing plant-based protein therapeutics for localized diseases with non-invasive treatment modalities may capitalize on the benefits of plant proteins while avoiding their inherent risks. Dupilumab, which is effective against a variety of allergic and autoimmune diseases but has systemic responses and injection-related side effects, may be more beneficial if delivered locally using a small biological form. In this study, we engineered a single-chain variable fragment (scFv) of dupilumab, termed Dup-scFv produced by Nicotiana benthamiana, and evaluated its tissue permeability and anti-inflammatory efficacy in air-liquid interface cultured human nasal epithelial cells (HNECs). Despite showing 3.67- and 17-fold lower binding affinity for IL-4Ra in surface plasmon resonance assays and cell binding assays, respectively, Dup-scFv retained most of the affinity of dupilumab, which was originally high, with a dissociation constant (KD) of 4.76 pM. In HNECs cultured at the air-liquid interface, Dup-scFv administered on the air side inhibited the inflammatory marker CCL26 in hard-to-reach basal cells more effectively than dupilumab. In addition, Dup-scFv had an overall permeability of 0.8% across cell layers compared to undetectable levels of dupilumab. These findings suggest that plant-produced Dup-scFv can be delivered non-invasively to cultured HNESc to alleviate inflammatory signaling, providing a practical approach to utilize plant-based proteins for topical therapeutic applications.


Subject(s)
Antibodies, Monoclonal, Humanized , Epithelial Cells , Nicotiana , Single-Chain Antibodies , Humans , Nicotiana/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/genetics , Chemokines, CC/metabolism , Interleukin-4 Receptor alpha Subunit/metabolism , Cells, Cultured , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Nasal Mucosa/immunology
2.
Plant Mol Biol ; 112(6): 357-371, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37479835

ABSTRACT

AtAIRP5 RING E3 ubiquitin ligase was recently identified as a positive regulator of the abscisic acid (ABA)-mediated drought stress response by stimulating the degradation of serine carboxypeptidase-like 1. Here, we identified GDSL-type esterase/lipase 22 (AtGELP22) and AtGELP23 as additional interacting partners of AtAIRP5. Yeast two-hybrid, pull-down, co-immunoprecipitation, and ubiquitination analyses verified that AtGELP22 and AtGELP23 are ubiquitinated target proteins of AtAIRP5. AtGELP22 and AtGELP23 were colocalized with AtAIRP5 to punctate-like structures in the cytosolic fraction, in which PYK10 and NAI2, two ER body marker proteins, are localized. T-DNA insertion atgelp22 and atgelp23 single knockout mutant plants showed phenotypes indistinguishable from those of wild-type plants under ABA treatment. In contrast, RNAi-mediated cosuppression of AtGELP22 and AtGELP23 resulted in hypersensitive ABA-mediated stomatal movements and higher tolerance to drought stress than that of the single mutant and wild-type plants. Taken together, our results suggest that the putative GDSL-type esterases/lipases AtGELP22 and AtGELP23 act as redundant negative regulators of the ABA-mediated drought stress response in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , RNA Interference , Ubiquitinated Proteins/genetics , Ubiquitinated Proteins/metabolism , Droughts , Arabidopsis Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498851

ABSTRACT

The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Innate Immunity Recognition , Plant Immunity , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Immunity/genetics , Pseudomonas syringae , Salicylic Acid/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Sci Rep ; 12(1): 19030, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347901

ABSTRACT

Cancer therapy using immune checkpoint inhibitor antibodies has markedly shifted the paradigm of cancer treatment. However, methods completely eliminating the effector function of these signal-regulating antibodies is urgently required. The heterogeneity of glycan chains in antibodies limits their use as therapeutic agents due to their variability; thus, the development of uniform glycan chains is necessary. Here, we subjected the anti-programmed cell death protein (PD)-1 antibody nivolumab, a representative immune checkpoint inhibitor, to GlycoDelete (GD) engineering to remove the antibody-dependent cellular cytotoxicity (ADCC) of the antibody, leaving only one glycan in the Fc. Glyco-engineered CHO cells were prepared by overexpressing endo-ß-N-acetyl-glucosaminidase (Endo T) in CHO cells, in which N-acetyl-glucosaminyl-transferase I was knocked out using Cas9. GD IgG1 nivolumab and GD IgG4 nivolumab were produced using GD CHO cells, and glycan removal was confirmed using mass spectrometry. Target binding and PD-1 inhibition was not altered; however, ADCC decreased. Furthermore, the IgG4 form, determined to be the most suitable form of GD nivolumab, was produced in a plant GD system. The plant GD nivolumab also reduced ADCC without affecting PD-1 inhibitory function. Thus, CHO and plant GD platforms can be used to improve signal-regulating antibodies by reducing their effector function.


Subject(s)
Immunoglobulin Fc Fragments , Nivolumab , Cricetinae , Animals , Cricetulus , Immunoglobulin Fc Fragments/metabolism , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors , Antibody-Dependent Cell Cytotoxicity , Immunoglobulin G , Polysaccharides/metabolism , Receptors, IgG/metabolism
5.
Plant Physiol ; 190(1): 898-919, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35699505

ABSTRACT

Ubiquitination is a major mechanism of eukaryotic posttranslational protein turnover that has been implicated in abscisic acid (ABA)-mediated drought stress response. Here, we isolated T-DNA insertion mutant lines in which ABA-insensitive RING protein 5 (AtAIRP5) was suppressed, resulting in hyposensitive ABA-mediated germination compared to wild-type Arabidopsis (Arabidopsis thaliana) plants. A homology search revealed that AtAIRP5 is identical to gibberellin (GA) receptor RING E3 ubiquitin (Ub) ligase (GARU), which downregulates GA signaling by degrading the GA receptor GID1, and thus AtAIRP5 was renamed AtAIRP5/GARU. The atairp5/garu knockout progeny were impaired in ABA-dependent stomatal closure and were markedly more susceptible to drought stress than wild-type plants, indicating a positive role for AtAIRP5/GARU in the ABA-mediated drought stress response. Yeast two-hybrid, pull-down, target ubiquitination, and in vitro and in planta degradation assays identified serine carboxypeptidase-like1 (AtSCPL1), which belongs to the clade 1A AtSCPL family, as a ubiquitinated target protein of AtAIRP5/GARU. atscpl1 single and atairp5/garu-1 atscpl1-2 double mutant plants were more tolerant to drought stress than wild-type plants in an ABA-dependent manner, suggesting that AtSCPL1 is genetically downstream of AtAIRP5/GARU. After drought treatment, the endogenous ABA levels in atscpl1 and atairp5/garu-1 atscpl1-2 mutant leaves were higher than those in wild-type and atairp5/garu leaves. Overall, our results suggest that AtAIRP5/GARU RING E3 Ub ligase functions as a positive regulator of the ABA-mediated drought response by promoting the degradation of AtSCPL1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxypeptidases , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Molecules ; 27(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408716

ABSTRACT

Phospholipase is an enzyme that hydrolyzes various phospholipid substrates at specific ester bonds and plays important roles such as membrane remodeling, as digestive enzymes, and the regulation of cellular mechanism. Phospholipase proteins are divided into following the four major groups according to the ester bonds they cleave off: phospholipase A1 (PLA1), phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD). Among the four phospholipase groups, PLA1 has been less studied than the other phospholipases. Here, we report the first molecular structures of plant PLA1s: AtDSEL and CaPLA1 derived from Arabidopsis thaliana and Capsicum annuum, respectively. AtDSEL and CaPLA1 are novel PLA1s in that they form homodimers since PLAs are generally in the form of a monomer. The dimerization domain at the C-terminal of the AtDSEL and CaPLA1 makes hydrophobic interactions between each monomer, respectively. The C-terminal domain is also present in PLA1s of other plants, but not in PLAs of mammals and fungi. An activity assay of AtDSEL toward various lipid substrates demonstrates that AtDSEL is specialized for the cleavage of sn-1 acyl chains. This report reveals a new domain that exists only in plant PLA1s and suggests that the domain is essential for homodimerization.


Subject(s)
Arabidopsis , Phospholipases A1 , Plant Proteins , Arabidopsis/enzymology , Capsicum/enzymology , Dimerization , Esters , Phospholipases A1/chemistry , Plant Proteins/chemistry
7.
J Exp Bot ; 73(1): 307-323, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34436579

ABSTRACT

One of the major regulatory pathways that permits plants to convert an external stimulus into an internal cellular response within a short period of time is the ubiquitination pathway. In this study, OsATL38 was identified as a low temperature-induced gene that encodes a rice homolog of Arabidopsis Tóxicos en Levadura RING-type E3 ubiquitin (Ub) ligase, which was predominantly localized to the plasma membrane. OsATL38-overexpressing transgenic rice plants exhibited decreased tolerance to cold stress as compared with wild-type rice plants. In contrast, RNAi-mediated OsATL38 knockdown transgenic progeny exhibited markedly increased tolerance to cold stress relative to that of wild-type plants, which indicated a negative role of OsATL38 in response to cold stress. Yeast two-hybrid, in vitro pull-down, and co-immunoprecipitation assays revealed that OsATL38 physically interacted with OsGF14d, a rice 14-3-3 protein. An in vivo target ubiquitination assay indicated that OsGF14d was mono-ubiquitinated by OsATL38. osgf14d knockout mutant plants were more sensitive to cold stress than wild-type rice plants, indicating that OsGF14d is a positive factor in the response to cold stress. These results provide evidence that the RING E3 Ub ligase OsATL38 negatively regulates the cold stress response in rice via mono-ubiquitination of OsGF14d 14-3-3 protein.


Subject(s)
Oryza , 14-3-3 Proteins/genetics , Cold-Shock Response , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
8.
J Integr Plant Biol ; 64(3): 625-631, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34964269

ABSTRACT

The mechanism regulating proteasomal activity under proteotoxic stress conditions remains unclear. Here, we showed that arsenite-induced proteotoxic stress resulted in upregulation of Arabidopsis homologous PUB22 and PUB23 U-box E3 ubiquitin ligases and that pub22pub23 double mutants displayed arsenite-insensitive seed germination and root growth phenotypes. PUB22/PUB23 downregulated 26S proteasome activity by promoting the dissociation of the 19S regulatory particle from the holo-proteasome complex, resulting in intracellular accumulation of UbG76V -GFP, an artificial substrate of the proteasome complex, and insoluble poly-ubiquitinated proteins. These results suggest that PUB22/PUB23 play a critical role in arsenite-induced proteotoxic stress response via negative regulation of 26S proteasome integrity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis , Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/genetics
9.
Front Plant Sci ; 12: 734500, 2021.
Article in English | MEDLINE | ID: mdl-34650582

ABSTRACT

The Antarctic flowering plant Deschampsia antarctica is highly sensitive to climate change and has shown rapid population increases during regional warming of the Antarctic Peninsula. Several studies have examined the physiological and biochemical changes related to environmental stress tolerance that allow D. antarctica to colonize harsh Antarctic environments; however, the molecular mechanisms of its responses to environmental changes remain poorly understood. To elucidate the survival strategies of D. antarctica in Antarctic environments, we investigated the functions of actin depolymerizing factor (ADF) in this species. We identified eight ADF genes in the transcriptome that were clustered into five subgroups by phylogenetic analysis. DaADF3, which belongs to a monocot-specific clade together with cold-responsive ADF in wheat, showed significant transcriptional induction in response to dehydration and cold, as well as under Antarctic field conditions. Multiple drought and low-temperature responsive elements were identified as possible binding sites of C-repeat-binding factors in the promoter region of DaADF3, indicating a close relationship between DaADF3 transcription control and abiotic stress responses. To investigate the functions of DaADF3 related to abiotic stresses in vivo, we generated transgenic rice plants overexpressing DaADF3. These transgenic plants showed greater tolerance to low-temperature stress than the wild-type in terms of survival rate, leaf chlorophyll content, and electrolyte leakage, accompanied by changes in actin filament organization in the root tips. Together, our results imply that DaADF3 played an important role in the enhancement of cold tolerance in transgenic rice plants and in the adaptation of D. antarctica to its extreme environment.

10.
Plant Mol Biol ; 106(4-5): 463-477, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34100185

ABSTRACT

KEY MESSAGE: OsPUB41 plays a negative role in drought stress response through the mediation of OsUBC25 and interacts with OsCLC6, suggesting a putative substrate. The notable expansion of Plant U-Box E3 ligases (PUB), compared with those in mammals, implies that PUB proteins have evolved to perform plant-specific functions. OsPUB41, a potential ortholog of CMPG1, was recently reported to regulate the cell wall degrading enzyme (CWDE)-induced innate immune response in rice. Here, we characterized the OsPUB41 gene, which encodes a dual-localized cytosolic and nuclear U-box E3 ligase in rice. OsPUB41 expression was specifically induced by dehydration among various abiotic stresses and abscisic acid (ABA) treatments. Furthermore, we revealed that the core U-box motif of OsPUB41 possesses the E3 ligase activity that can be activated by OsUBC25 in rice. The Ubi:RNAi-OsPUB41 knock-down and ospub41 suppression mutant plants exhibited enhanced tolerance to drought stress compared with the wild-type rice plants in terms of transpirational water loss, long-term dehydration response, and chlorophyll content. Moreover, the knock-down or suppression of the OsPUB41 gene did not cause adverse effect on rice yield-related traits. Yeast two-hybrid and an in vitro pull-down analyses revealed that OsCLC6, a chloride channel, is a putative substrate of OsPUB41. Overall, these results suggest that OsPUB41 acts as a negative regulator of dehydration conditions and interacts with OsCLC6, implying that it is a substrate of OsPUB41.


Subject(s)
Oryza/enzymology , Stress, Physiological , Ubiquitin-Protein Ligases/genetics , Abscisic Acid/pharmacology , Cell Nucleus/metabolism , Chloride Channels/metabolism , Cytosol/metabolism , Droughts , Gene Knockdown Techniques , Mutation , Oryza/drug effects , Oryza/genetics , Plants, Genetically Modified , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL