Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Sci Rep ; 14(1): 14558, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914666

ABSTRACT

Plants offer a cost-effective and scalable pharmaceutical platform devoid of host-derived contamination risks. However, their medical application is complicated by the potential for acute allergic reactions to external proteins. Developing plant-based protein therapeutics for localized diseases with non-invasive treatment modalities may capitalize on the benefits of plant proteins while avoiding their inherent risks. Dupilumab, which is effective against a variety of allergic and autoimmune diseases but has systemic responses and injection-related side effects, may be more beneficial if delivered locally using a small biological form. In this study, we engineered a single-chain variable fragment (scFv) of dupilumab, termed Dup-scFv produced by Nicotiana benthamiana, and evaluated its tissue permeability and anti-inflammatory efficacy in air-liquid interface cultured human nasal epithelial cells (HNECs). Despite showing 3.67- and 17-fold lower binding affinity for IL-4Ra in surface plasmon resonance assays and cell binding assays, respectively, Dup-scFv retained most of the affinity of dupilumab, which was originally high, with a dissociation constant (KD) of 4.76 pM. In HNECs cultured at the air-liquid interface, Dup-scFv administered on the air side inhibited the inflammatory marker CCL26 in hard-to-reach basal cells more effectively than dupilumab. In addition, Dup-scFv had an overall permeability of 0.8% across cell layers compared to undetectable levels of dupilumab. These findings suggest that plant-produced Dup-scFv can be delivered non-invasively to cultured HNESc to alleviate inflammatory signaling, providing a practical approach to utilize plant-based proteins for topical therapeutic applications.


Subject(s)
Antibodies, Monoclonal, Humanized , Epithelial Cells , Nicotiana , Single-Chain Antibodies , Humans , Nicotiana/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/genetics , Chemokines, CC/metabolism , Interleukin-4 Receptor alpha Subunit/metabolism , Cells, Cultured , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Nasal Mucosa/immunology
2.
Plant Mol Biol ; 112(6): 357-371, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37479835

ABSTRACT

AtAIRP5 RING E3 ubiquitin ligase was recently identified as a positive regulator of the abscisic acid (ABA)-mediated drought stress response by stimulating the degradation of serine carboxypeptidase-like 1. Here, we identified GDSL-type esterase/lipase 22 (AtGELP22) and AtGELP23 as additional interacting partners of AtAIRP5. Yeast two-hybrid, pull-down, co-immunoprecipitation, and ubiquitination analyses verified that AtGELP22 and AtGELP23 are ubiquitinated target proteins of AtAIRP5. AtGELP22 and AtGELP23 were colocalized with AtAIRP5 to punctate-like structures in the cytosolic fraction, in which PYK10 and NAI2, two ER body marker proteins, are localized. T-DNA insertion atgelp22 and atgelp23 single knockout mutant plants showed phenotypes indistinguishable from those of wild-type plants under ABA treatment. In contrast, RNAi-mediated cosuppression of AtGELP22 and AtGELP23 resulted in hypersensitive ABA-mediated stomatal movements and higher tolerance to drought stress than that of the single mutant and wild-type plants. Taken together, our results suggest that the putative GDSL-type esterases/lipases AtGELP22 and AtGELP23 act as redundant negative regulators of the ABA-mediated drought stress response in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , RNA Interference , Ubiquitinated Proteins/genetics , Ubiquitinated Proteins/metabolism , Droughts , Arabidopsis Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498851

ABSTRACT

The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Innate Immunity Recognition , Plant Immunity , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Immunity/genetics , Pseudomonas syringae , Salicylic Acid/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Sci Rep ; 12(1): 19030, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347901

ABSTRACT

Cancer therapy using immune checkpoint inhibitor antibodies has markedly shifted the paradigm of cancer treatment. However, methods completely eliminating the effector function of these signal-regulating antibodies is urgently required. The heterogeneity of glycan chains in antibodies limits their use as therapeutic agents due to their variability; thus, the development of uniform glycan chains is necessary. Here, we subjected the anti-programmed cell death protein (PD)-1 antibody nivolumab, a representative immune checkpoint inhibitor, to GlycoDelete (GD) engineering to remove the antibody-dependent cellular cytotoxicity (ADCC) of the antibody, leaving only one glycan in the Fc. Glyco-engineered CHO cells were prepared by overexpressing endo-ß-N-acetyl-glucosaminidase (Endo T) in CHO cells, in which N-acetyl-glucosaminyl-transferase I was knocked out using Cas9. GD IgG1 nivolumab and GD IgG4 nivolumab were produced using GD CHO cells, and glycan removal was confirmed using mass spectrometry. Target binding and PD-1 inhibition was not altered; however, ADCC decreased. Furthermore, the IgG4 form, determined to be the most suitable form of GD nivolumab, was produced in a plant GD system. The plant GD nivolumab also reduced ADCC without affecting PD-1 inhibitory function. Thus, CHO and plant GD platforms can be used to improve signal-regulating antibodies by reducing their effector function.


Subject(s)
Immunoglobulin Fc Fragments , Nivolumab , Cricetinae , Animals , Cricetulus , Immunoglobulin Fc Fragments/metabolism , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors , Antibody-Dependent Cell Cytotoxicity , Immunoglobulin G , Polysaccharides/metabolism , Receptors, IgG/metabolism
5.
Plant Physiol ; 190(1): 898-919, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35699505

ABSTRACT

Ubiquitination is a major mechanism of eukaryotic posttranslational protein turnover that has been implicated in abscisic acid (ABA)-mediated drought stress response. Here, we isolated T-DNA insertion mutant lines in which ABA-insensitive RING protein 5 (AtAIRP5) was suppressed, resulting in hyposensitive ABA-mediated germination compared to wild-type Arabidopsis (Arabidopsis thaliana) plants. A homology search revealed that AtAIRP5 is identical to gibberellin (GA) receptor RING E3 ubiquitin (Ub) ligase (GARU), which downregulates GA signaling by degrading the GA receptor GID1, and thus AtAIRP5 was renamed AtAIRP5/GARU. The atairp5/garu knockout progeny were impaired in ABA-dependent stomatal closure and were markedly more susceptible to drought stress than wild-type plants, indicating a positive role for AtAIRP5/GARU in the ABA-mediated drought stress response. Yeast two-hybrid, pull-down, target ubiquitination, and in vitro and in planta degradation assays identified serine carboxypeptidase-like1 (AtSCPL1), which belongs to the clade 1A AtSCPL family, as a ubiquitinated target protein of AtAIRP5/GARU. atscpl1 single and atairp5/garu-1 atscpl1-2 double mutant plants were more tolerant to drought stress than wild-type plants in an ABA-dependent manner, suggesting that AtSCPL1 is genetically downstream of AtAIRP5/GARU. After drought treatment, the endogenous ABA levels in atscpl1 and atairp5/garu-1 atscpl1-2 mutant leaves were higher than those in wild-type and atairp5/garu leaves. Overall, our results suggest that AtAIRP5/GARU RING E3 Ub ligase functions as a positive regulator of the ABA-mediated drought response by promoting the degradation of AtSCPL1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxypeptidases , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Molecules ; 27(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408716

ABSTRACT

Phospholipase is an enzyme that hydrolyzes various phospholipid substrates at specific ester bonds and plays important roles such as membrane remodeling, as digestive enzymes, and the regulation of cellular mechanism. Phospholipase proteins are divided into following the four major groups according to the ester bonds they cleave off: phospholipase A1 (PLA1), phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD). Among the four phospholipase groups, PLA1 has been less studied than the other phospholipases. Here, we report the first molecular structures of plant PLA1s: AtDSEL and CaPLA1 derived from Arabidopsis thaliana and Capsicum annuum, respectively. AtDSEL and CaPLA1 are novel PLA1s in that they form homodimers since PLAs are generally in the form of a monomer. The dimerization domain at the C-terminal of the AtDSEL and CaPLA1 makes hydrophobic interactions between each monomer, respectively. The C-terminal domain is also present in PLA1s of other plants, but not in PLAs of mammals and fungi. An activity assay of AtDSEL toward various lipid substrates demonstrates that AtDSEL is specialized for the cleavage of sn-1 acyl chains. This report reveals a new domain that exists only in plant PLA1s and suggests that the domain is essential for homodimerization.


Subject(s)
Arabidopsis , Phospholipases A1 , Plant Proteins , Arabidopsis/enzymology , Capsicum/enzymology , Dimerization , Esters , Phospholipases A1/chemistry , Plant Proteins/chemistry
7.
J Integr Plant Biol ; 64(3): 625-631, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34964269

ABSTRACT

The mechanism regulating proteasomal activity under proteotoxic stress conditions remains unclear. Here, we showed that arsenite-induced proteotoxic stress resulted in upregulation of Arabidopsis homologous PUB22 and PUB23 U-box E3 ubiquitin ligases and that pub22pub23 double mutants displayed arsenite-insensitive seed germination and root growth phenotypes. PUB22/PUB23 downregulated 26S proteasome activity by promoting the dissociation of the 19S regulatory particle from the holo-proteasome complex, resulting in intracellular accumulation of UbG76V -GFP, an artificial substrate of the proteasome complex, and insoluble poly-ubiquitinated proteins. These results suggest that PUB22/PUB23 play a critical role in arsenite-induced proteotoxic stress response via negative regulation of 26S proteasome integrity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis , Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/genetics
8.
J Exp Bot ; 73(1): 307-323, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34436579

ABSTRACT

One of the major regulatory pathways that permits plants to convert an external stimulus into an internal cellular response within a short period of time is the ubiquitination pathway. In this study, OsATL38 was identified as a low temperature-induced gene that encodes a rice homolog of Arabidopsis Tóxicos en Levadura RING-type E3 ubiquitin (Ub) ligase, which was predominantly localized to the plasma membrane. OsATL38-overexpressing transgenic rice plants exhibited decreased tolerance to cold stress as compared with wild-type rice plants. In contrast, RNAi-mediated OsATL38 knockdown transgenic progeny exhibited markedly increased tolerance to cold stress relative to that of wild-type plants, which indicated a negative role of OsATL38 in response to cold stress. Yeast two-hybrid, in vitro pull-down, and co-immunoprecipitation assays revealed that OsATL38 physically interacted with OsGF14d, a rice 14-3-3 protein. An in vivo target ubiquitination assay indicated that OsGF14d was mono-ubiquitinated by OsATL38. osgf14d knockout mutant plants were more sensitive to cold stress than wild-type rice plants, indicating that OsGF14d is a positive factor in the response to cold stress. These results provide evidence that the RING E3 Ub ligase OsATL38 negatively regulates the cold stress response in rice via mono-ubiquitination of OsGF14d 14-3-3 protein.


Subject(s)
Oryza , 14-3-3 Proteins/genetics , Cold-Shock Response , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
Front Plant Sci ; 12: 734500, 2021.
Article in English | MEDLINE | ID: mdl-34650582

ABSTRACT

The Antarctic flowering plant Deschampsia antarctica is highly sensitive to climate change and has shown rapid population increases during regional warming of the Antarctic Peninsula. Several studies have examined the physiological and biochemical changes related to environmental stress tolerance that allow D. antarctica to colonize harsh Antarctic environments; however, the molecular mechanisms of its responses to environmental changes remain poorly understood. To elucidate the survival strategies of D. antarctica in Antarctic environments, we investigated the functions of actin depolymerizing factor (ADF) in this species. We identified eight ADF genes in the transcriptome that were clustered into five subgroups by phylogenetic analysis. DaADF3, which belongs to a monocot-specific clade together with cold-responsive ADF in wheat, showed significant transcriptional induction in response to dehydration and cold, as well as under Antarctic field conditions. Multiple drought and low-temperature responsive elements were identified as possible binding sites of C-repeat-binding factors in the promoter region of DaADF3, indicating a close relationship between DaADF3 transcription control and abiotic stress responses. To investigate the functions of DaADF3 related to abiotic stresses in vivo, we generated transgenic rice plants overexpressing DaADF3. These transgenic plants showed greater tolerance to low-temperature stress than the wild-type in terms of survival rate, leaf chlorophyll content, and electrolyte leakage, accompanied by changes in actin filament organization in the root tips. Together, our results imply that DaADF3 played an important role in the enhancement of cold tolerance in transgenic rice plants and in the adaptation of D. antarctica to its extreme environment.

10.
Plant Mol Biol ; 106(4-5): 463-477, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34100185

ABSTRACT

KEY MESSAGE: OsPUB41 plays a negative role in drought stress response through the mediation of OsUBC25 and interacts with OsCLC6, suggesting a putative substrate. The notable expansion of Plant U-Box E3 ligases (PUB), compared with those in mammals, implies that PUB proteins have evolved to perform plant-specific functions. OsPUB41, a potential ortholog of CMPG1, was recently reported to regulate the cell wall degrading enzyme (CWDE)-induced innate immune response in rice. Here, we characterized the OsPUB41 gene, which encodes a dual-localized cytosolic and nuclear U-box E3 ligase in rice. OsPUB41 expression was specifically induced by dehydration among various abiotic stresses and abscisic acid (ABA) treatments. Furthermore, we revealed that the core U-box motif of OsPUB41 possesses the E3 ligase activity that can be activated by OsUBC25 in rice. The Ubi:RNAi-OsPUB41 knock-down and ospub41 suppression mutant plants exhibited enhanced tolerance to drought stress compared with the wild-type rice plants in terms of transpirational water loss, long-term dehydration response, and chlorophyll content. Moreover, the knock-down or suppression of the OsPUB41 gene did not cause adverse effect on rice yield-related traits. Yeast two-hybrid and an in vitro pull-down analyses revealed that OsCLC6, a chloride channel, is a putative substrate of OsPUB41. Overall, these results suggest that OsPUB41 acts as a negative regulator of dehydration conditions and interacts with OsCLC6, implying that it is a substrate of OsPUB41.


Subject(s)
Oryza/enzymology , Stress, Physiological , Ubiquitin-Protein Ligases/genetics , Abscisic Acid/pharmacology , Cell Nucleus/metabolism , Chloride Channels/metabolism , Cytosol/metabolism , Droughts , Gene Knockdown Techniques , Mutation , Oryza/drug effects , Oryza/genetics , Plants, Genetically Modified , Ubiquitin-Protein Ligases/metabolism
11.
Mol Biotechnol ; 63(11): 1016-1029, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34185248

ABSTRACT

Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.


Subject(s)
Antigens, CD20/metabolism , Arabidopsis/metabolism , Nicotiana/metabolism , Plant Leaves/chemistry , Rituximab/metabolism , Animals , Antibody Affinity , Antigens, CD20/chemistry , Antineoplastic Agents, Immunological/isolation & purification , Antineoplastic Agents, Immunological/metabolism , Arabidopsis/genetics , Cricetinae , Humans , Plant Leaves/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Rituximab/biosynthesis , Rituximab/genetics , Rituximab/isolation & purification , Nicotiana/genetics
12.
J Integr Plant Biol ; 63(3): 431-437, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32910530

ABSTRACT

Drought stress has detrimental effects on plants. Although the abscisic acid (ABA)-mediated drought response is well established, defensive mechanisms to cope with dehydration-induced proteotoxicity have been rarely studied. DRR1 was identified as an Arabidopsis drought-induced gene encoding an ER-localized RING-type E3 Ub ligase. Suppression of DRR1 markedly reduced tolerance to drought and proteotoxic stress without altering ABA-mediated germination and stomatal movement. Proteotoxicity- and dehydration-induced insoluble ubiquitinated protein accumulation was more obvious in DRR1 loss-of-function plants than in wild-type plants. These results suggest that DRR1 is involved in an ABA-independent drought stress response possibly through the mitigation of dehydration-induced proteotoxic stress.


Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Droughts , Stress, Physiological , Ubiquitin-Protein Ligases/metabolism , Ubiquitinated Proteins/metabolism , Arabidopsis Proteins/genetics , Endoplasmic Reticulum/metabolism , Solubility , Ubiquitin-Protein Ligases/genetics
13.
Planta ; 252(5): 93, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33106936

ABSTRACT

MAIN CONCLUSION: AtKPNB1, an Arabidopsis importin-ß protein, was regulated by AtAIRP1 E3 ubiquitin ligase, which intensified the ABA-mediated drought stress response. As an early step in the abscisic acid (ABA)-mediated drought response, the ABA signal is transduced into the nucleus, and thus the nuclear transport system is crucially involved in the drought stress response. AtKPNB1, an importin-ß protein, which is a core component of nuclear transport, was previously reported to be a negative factor in the ABA-mediated drought stress response (Luo et al. Luo et al., Plant J 75:377-389, 2013). Here, we report that AtAIPR1, an Arabidopsis RING-type E3 ubiquitin (Ub) ligase, interacted with and ubiquitinated AtKPNB1. A null mutation of AtKPNB1 suppressed the ABA-insensitive germination phenotype of atairp1 mutant seedlings as compared to that of the wild-type plants. Furthermore, the ABA-insensitive stomatal closure and drought-susceptible phenotypes of atairp1 were rescued in atairp1atkpnb1 double mutant progeny, indicating that AtKPNB1 functions downstream of AtAIRP1. These data suggest that AtAIRP1 regulates the ABA-mediated drought response in Arabidopsis via ubiquitination of AtKPNB1.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Stress, Physiological , Ubiquitin-Protein Ligases , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Mutation , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Biomed Opt Express ; 11(7): 3936-3951, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33014577

ABSTRACT

Light sheet fluorescence microscopy (LSFM) has become an indispensable tool in biomedical studies owing to its depth-sectioning capability and low photo-bleaching. The axial resolution in LSFM is determined mainly by the thickness of the illumination sheet, and a high numerical-aperture lens is thus preferred in the illumination to increase the axial resolution. However, a rapid divergence of the illumination beam limits the effective field-of-view (FoV), that provides high-resolution images. Several strategies have been demonstrated for FoV enhancement, which involve the use of Bessel or Airy beams, for example. However, the generation of these beams requires complicated optical setup or phase filters with continuous phase distributions, which are difficult to manufacture. In contrast, a binary phase filter (BPF) comprising concentric rings with 0 or π phases produces a response similar to its continuous original and is easy to realize. Here, we present a novel form of LSFM that integrates BPFs derived from two representative axi-symmetric aberrations, including phase axicon and spherical aberrations, to improve the imaging performance. We demonstrate that these BPFs significantly increase the FoV, and those derived from axicon generate self-reconstructing beams, which are highly desirable in imaging through scattering specimens. We validate its high-contrast imaging capability over extended FoV by presenting three-dimensional images of microspheres, imaginal disc of Drosophila larva, and Arabidopsis.

15.
Plant J ; 103(2): 824-842, 2020 07.
Article in English | MEDLINE | ID: mdl-32314432

ABSTRACT

Ubiquitination is a critical post-translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T-DNA insertion mutant in the At5g10650 locus. Compared to wild-type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C-terminal C3HC4-type Really Interesting New Gene (RING) motif, which was essential for ABA-mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule-associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA-promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild-type levels of H2 O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2 O2 and calcium in the ABA-mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2 O2 , and calcium, which in turn resulted in ABA-hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild-type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA-mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Microtubules/metabolism , Plant Growth Regulators/physiology , Plant Stomata/physiology , Ubiquitin-Protein Ligases/physiology , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Dehydration , Plant Growth Regulators/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
Plant Cell Physiol ; 61(1): 88-104, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31513272

ABSTRACT

Deschampsia antarctica is a Poaceae grass that has adapted to and colonized Antarctica. When D. antarctica plants were subjected to cold and dehydration stress both in the Antarctic field and in laboratory experiments, galactinol, a precursor of raffinose family oligosaccharides (RFOs) and raffinose were highly accumulated, which was accompanied by upregulation of galactinol synthase (GolS). The Poaceae monocots have a small family of GolS genes, which are divided into two distinct groups called types I and II. Type II GolSs are highly expanded in cold-adapted monocot plants. Transgenic rice plants, in which type II D. antarctica GolS2 (DaGolS2) and rice GolS2 (OsGolS2) were constitutively expressed, were markedly tolerant to cold and drought stress as compared to the wild-type rice plants. The RFO contents and GolS enzyme activities were higher in the DaGolS2- and OsGolS2-overexpressing progeny than in the wild-type plants under both normal and stress conditions. DaGolS2 and OsGolS2 overexpressors contained reduced levels of reactive oxygen species (ROS) relative to the wild-type plants after cold and drought treatments. Overall, these results suggest that Poaceae type II GolS2s play a conserved role in D. antarctica and rice in response to drought and cold stress by inducing the accumulation of RFO and decreasing ROS levels.


Subject(s)
Galactosyltransferases/genetics , Oligosaccharides/analysis , Oryza/genetics , Poaceae/genetics , Raffinose/analysis , Stress, Physiological/genetics , Cold Temperature , Disaccharides/analysis , Droughts , Galactosyltransferases/metabolism , Gene Expression Regulation, Plant , Magnoliopsida/genetics , Magnoliopsida/metabolism , Malondialdehyde/metabolism , Oryza/metabolism , Phylogeny , Plant Leaves/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Poaceae/metabolism , Seeds/chemistry , Thiobarbiturates/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
BMC Genomics ; 20(1): 326, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31035917

ABSTRACT

BACKGROUND: Controlled turnover of proteins as mediated by the ubiquitin proteasome system (UPS) is an important element in plant defense against environmental and pathogen stresses. E3 ligases play a central role in subjecting proteins to hydrolysis by the UPS. Recently, it has been demonstrated that a specific class of E3 ligases termed the U-box ligases are directly associated with the defense mechanisms against abiotic and biotic stresses in several plants. However, no studies on U-box E3 ligases have been performed in one of the important staple crops, barley. RESULTS: In this study, we identified 67 putative U-box E3 ligases from the barley genome and expressed sequence tags (ESTs). Similar to Arabidopsis and rice U-box E3 ligases, most of barley U-box E3 ligases possess evolutionary well-conserved domain organizations. Based on the domain compositions and arrangements, the barley U-box proteins were classified into eight different classes. Along with this new classification, we refined the previously reported classifications of U-box E3 ligase genes in Arabidopsis and rice. Furthermore, we investigated the expression profile of 67 U-box E3 ligase genes in response to drought stress and pathogen infection. We observed that many U-box E3 ligase genes were specifically up-and-down regulated by drought stress or by fungal infection, implying their possible roles of some U-box E3 ligase genes in the stress responses. CONCLUSION: This study reports the classification of U-box E3 ligases in barley and their expression profiles against drought stress and pathogen infection. Therefore, the classification and expression profiling of barley U-box genes can be used as a platform to functionally define the stress-related E3 ligases in barley.


Subject(s)
Gene Expression Regulation, Plant , Hordeum/genetics , Host-Parasite Interactions/genetics , Plant Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Amino Acid Sequence , Arabidopsis/genetics , Ascomycota/pathogenicity , Droughts , Genome, Plant , Hordeum/growth & development , Oryza/genetics , Phylogeny , Plant Proteins/classification , Seedlings/microbiology , Sequence Alignment , Ubiquitin-Protein Ligases/classification
18.
Plant Physiol ; 180(2): 1230-1240, 2019 06.
Article in English | MEDLINE | ID: mdl-30890661

ABSTRACT

MISFOLDED PROTEIN SENSING RING1 (MPSR1) is a chaperone-independent E3 ubiquitin ligase that participates in protein quality control by eliminating misfolded proteins in Arabidopsis (Arabidopsis thaliana). Here, we report that in the early stages of proteotoxic stress, cellular levels of MPSR1 increased immediately, whereas levels of HEAT SHOCK PROTEIN90.1 (AtHSP90.1) were unaltered despite massively upregulated transcription. At this stage, the gene-silencing pathway mediated by microRNA 414 (miR414) suppressed AtHSP90.1 translation. By contrast, under prolonged stress, AtHSP90.1 was not suppressed, and instead competed with MPSR1 to act on misfolded proteins, promoting the destruction of MPSR1. Deficiency or excess of MPSR1 significantly abolished or intensified the suppression of AtHSP90.1, respectively. Similar to the MPSR1-overexpressing transgenic plants, the miR414-overexpressing plants showed an increased tolerance to proteotoxic stress as compared to the wild-type plants. Although the functional relationship between MPSR1 and miR414 remains unclear, both MPSR1 and miR414 demonstrated negative modulation of the expression of AtHSP90.1. The inverse correlation between MPSR1 and AtHSP90.1 via miR414 may adjust the set-point of the HSP90-mediated protein quality control process in response to increasing stress intensity in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytoplasm/metabolism , HSP90 Heat-Shock Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Gene Silencing , HSP90 Heat-Shock Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Folding , Stress, Physiological/genetics , Transcriptome/genetics
19.
Plant J ; 99(3): 426-438, 2019 08.
Article in English | MEDLINE | ID: mdl-30920691

ABSTRACT

Oryza sativa BRASSINAZOLE RESISTANT 1 (OsBZR1) is the closest rice homolog of the Arabidopsis BZR1 and bri1-EMS-SUPPRESSOR 1 (BES1)/BZR2 transcription factors. OsBZR1 plays a central role in the rice brassinosteroid signaling pathway. Despite its functional importance, the control mechanism by which the cellular stability of OsBZR1 is regulated has not yet been fully elucidated. Here, we report that a rice U-box E3 ubiquitin (Ub) ligase OsPUB24 acts as a negative regulator in the BR signaling pathway via the 26S proteasome-dependent degradation of OsBZR1. The ospub24 T-DNA knock-out mutant and Ubi:RNAi-OsPUB24 knock-down rice plants displayed enhanced seedling growth, increased lamina joint bending, and hypersensitivity to brassinolide (BL). The expressions of the BR biosynthetic genes suppressed by BR in a negative feedback loop were lower in the mutant progeny than in the wild-type rice plants, which indicated increased BR responses in the mutant line. OsPUB24 ubiquitinated OsBZR1, resulting in the proteasomal degradation of OsBZR1. In addition, the stability of OsPUB24 was downregulated by BL and bikinin, an inhibitor of Oryza sativa Shaggy/GSK3-like kinase 22 (OsSK22). OsSK22, the homolog of Arabidopsis BRASSINOSTEROID INSENSITIVE 2 (BIN2) protein kinase, phosphorylated OsPUB24 and elevated the cellular stability of OsPUB24. Our findings suggest that OsPUB24 participates in OsBZR1 turnover, and that the regulatory networks of OsPUB24, OsSK22 and OsBZR1 are crucial for fine-tuning the BR response in rice.


Subject(s)
Brassinosteroids/pharmacology , DNA-Binding Proteins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Steroids, Heterocyclic/pharmacology , Ubiquitin-Protein Ligases/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Oryza/genetics , Phosphorylation/drug effects , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plants, Genetically Modified , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Seedlings/genetics , Seedlings/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics
20.
Protein Expr Purif ; 159: 34-41, 2019 07.
Article in English | MEDLINE | ID: mdl-30880170

ABSTRACT

The plant protein production system is a platform that can not only reduce production costs but also produce monoclonal antibodies that do not have the risk of residual proteins from the host. However, due to the difference between post-translational processes in plants and animals, there may be a modification in the Fab region of the monoclonal antibody produced in the plant; thus, it is necessary to compare the antigen affinity of this antibody with that of the prototype. In this study, ofatumumab, a fully human anti-CD20 IgG1κ monoclonal antibody used for its non-cross resistance to rituximab, was expressed in Nicotiana benthamiana, and its affinities and efficacies were compared with those of native ofatumumab produced from CHO cells. Two forms of plant ofatumumab (with or without HDEL-tag) were generated and their production yields were compared. The HDEL-tagged ofatumumab was more expressed in plants than the form without HDEL-tag. The specificity of the target recognition of plant-derived ofatumumab was confirmed by mCherry-CD20-expressing HEK cells via immuno-staining, and the capping of CD20 after ofatumumab binding was also confirmed using Ramos B cells. In the functional equivalence tests, the binding affinities and complement-dependent cell cytotoxicity efficacy of plant-ofatumumab-HDEL and plant-ofatumumab without HDEL were significantly reduced compared to those of CHO-derived ofatumumab. Therefore, we suggest that although ofatumumab is not a good candidate as a template for plant-derived monoclonal antibodies because of its decreased affinity when produced in plants, it is an interesting target to study the differences between post-translational modifications in mammals and plants.


Subject(s)
Antibodies, Monoclonal, Humanized/genetics , Immunoglobulin Fab Fragments/chemistry , Nicotiana/metabolism , Plant Leaves/metabolism , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/metabolism , Antigens, CD20/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis , B-Lymphocytes , CHO Cells , Cell Death/drug effects , Cell Line, Tumor , Cricetulus , Cytotoxicity, Immunologic/drug effects , HEK293 Cells , Humans , Protein Conformation , Rituximab/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL