Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38949757

ABSTRACT

Influenza virus infection is an important public-health concern because of its high transmissibility and potential for severe complications. To mitigate the severity and complications of influenza, probiotics containing Lactobacillus are used and generally recognized as safe. We evaluated the anti-influenza effect of Limosilactobacillus reuteri (L. reuteri) KBL346, isolated from the fecel sample of healthy South Koreans, in mice. BALB/c mice were orally administered live and heat-inactivated L. reuteri KBL346. After infection with influenza virus (A/Puerto Rico/8/34) 0.5 times the 50% lethal dose (LD50), body weight loss was improved and recovery was accelerated. Furthermore, L. reuteri KBL346 improved body weight loss and survival rate of mice infected with 4 times the LD50 of influenza virus. Heat-inactivated L. reuteri KBL346 reduced the viral titer in the lung and the plasma immunoglobulin G level. Expression levels of genes encoding inflammatory cytokines, such as interferon-γ and toll-like receptor 2 (Tlr2), were decreased in the lung tissues of mice administered L. reuteri KBL346. Live and heat-inactivated L. reuteri KBL346 increased the expression level of Adamts4, which promotes recovery after infection, and decreased that of Tlr2. The α-diversity of the gut microbiome was modulated by the administration of L. reuteri KBL346. In addition, the structure of the gut microbial community differed according to the degree of weight loss. L. reuteri KBL346 has the potential to alleviate disease severity and improve histopathological changes in mice infected with influenza A/PR8, suggesting its efficacy as a probiotic against influenza infection.

2.
J Microbiol Biotechnol ; 34(6): 1299-1306, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38755001

ABSTRACT

Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.


Subject(s)
Anti-Bacterial Agents , Cultured Milk Products , Gastrointestinal Microbiome , Interleukin-10 , Lacticaseibacillus rhamnosus , Mice, Inbred BALB C , Probiotics , Animals , Gastrointestinal Microbiome/drug effects , Female , Mice , Probiotics/administration & dosage , Anti-Bacterial Agents/pharmacology , Interleukin-10/metabolism , Cultured Milk Products/microbiology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Interferon-gamma/metabolism , Colon/microbiology , Fermentation , Cytokines/metabolism , Cytokines/blood , Feces/microbiology
3.
Eur J Nutr ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705901

ABSTRACT

PURPOSE: Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS: An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-ß and p-cresyl sulfate were administered with butyrate. RESULTS: In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS: This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.

4.
Article in English | MEDLINE | ID: mdl-38411865

ABSTRACT

Faecalibacterium prausnitzii is one of the most dominant commensal bacteria in the human gut, and certain anti-inflammatory functions have been attributed to a single microbial anti-inflammatory molecule (MAM). Simultaneously, substantial diversity among F. prausnitzii strains is acknowledged, emphasizing the need for strain-level functional studies aimed at developing innovative probiotics. Here, two distinct F. prausnitzii strains, KBL1026 and KBL1027, were isolated from Korean donors, exhibiting notable differences in the relative abundance of F. prausnitzii. Both strains were identified as the core Faecalibacterium amplicon sequence variant (ASV) within the healthy Korean cohort, and their MAM sequences showed a high similarity of 98.6%. However, when a single strain was introduced to mice with dextran sulfate sodium (DSS)-induced colitis, KBL1027 showed the most significant ameliorative effects, including alleviation of colonic inflammation and restoration of gut microbial dysbiosis. Moreover, the supernatant from KBL1027 elevated the secretion of IL-10 cytokine more than that of KBL1026 in mouse bone marrow-derived macrophage (BMDM) cells, suggesting that the strain-specific, anti-inflammatory efficacy of KBL1027 might involve effector compounds other than MAM. Through analysis of the Faecalibacterium pan-genome and comparative genomics, strain-specific functions related to extracellular polysaccharide biosynthesis were identified in KBL1027, which could contribute to the observed morphological disparities. Collectively, our findings highlight the strain-specific, anti-inflammatory functions of F. prausnitzii, even within the same core ASV, emphasizing the influence of their human origin.

5.
J Microbiol ; 62(2): 91-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38386273

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.


Subject(s)
Dermatitis, Atopic , Probiotics , Animals , Mice , Dermatitis, Atopic/therapy , Dermatitis, Atopic/metabolism , Lactobacillus acidophilus/metabolism , Cytokines/metabolism , Skin , Probiotics/therapeutic use
6.
J Microbiol ; 61(7): 673-682, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37314676

ABSTRACT

Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.


Subject(s)
Colitis , Lacticaseibacillus rhamnosus , Probiotics , Animals , Mice , Colitis/chemically induced , Colitis/immunology , Colitis/microbiology , Colitis/therapy , Colon/immunology , Colon/microbiology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Inflammation/therapy , Mice, Inbred C57BL , Probiotics/administration & dosage , Probiotics/therapeutic use , Biomarkers/analysis , Gastrointestinal Microbiome , Biodiversity , Fatty Acids, Volatile/metabolism , Administration, Oral , Lactobacillaceae/classification , Lactobacillaceae/physiology
7.
Mol Nutr Food Res ; 66(22): e2101105, 2022 11.
Article in English | MEDLINE | ID: mdl-36059191

ABSTRACT

SCOPE: Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD is aimed. METHODS AND RESULTS: An animal model of CKD is established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice are administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria are improved by administration of KBL409. Ade-CKD mice also exhibit a disrupted intestinal barrier and elevate levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes are attenuated by KBL409. Administration of KBL409 significantly reduces macrophage infiltration and promotes a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway is activated in the kidneys of Ade-CKD and decreases by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increase M2 macrophage polarization factors and decrease profibrotic markers. CONCLUSIONS: These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury.


Subject(s)
Probiotics , Renal Insufficiency, Chronic , Mice , Animals , Lactobacillus acidophilus , Mice, Inbred C57BL , Fibrosis , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Probiotics/pharmacology , Kidney/metabolism , Disease Models, Animal , Adenine/pharmacology , Adenine/metabolism
8.
Sci Rep ; 12(1): 9640, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688918

ABSTRACT

Inflammatory bowel disease (IBD) refers to disorders involving chronic inflammation of the gastrointestinal tract. Well-established treatments for IBD have not yet to be suggested. To address this gap, we investigated the effects of co-administration of Lactobacillus gasseri (L. gasseri) KBL697 and infliximab (IFX), the first approved tumor necrosis factor (TNF)-alpha inhibitor, on the dextran sodium sulfate-induced colitis mouse model. 2 × 109 colony-forming units/g of L. gasseri KBL697 were administered to seven-week-old female C57BL/6J mice daily by oral gavage. On day three, IFX (5 mg/kg) suspended in 1 × PBS (200 µL) was intravenously injected in the IFX-treated group and all mice were sacrificed on day nine. Co-administration of L. gasseri KBL697 and IFX improved colitis symptoms in mice, including body weight, disease activity index, colon length, and histology score. Additionally, pro-inflammatory cytokines, such as interferon-gamma, interleukin (IL)-2, IL-6, IL-17A, and TNF were significantly decreased, while IL-10, an anti-inflammatory cytokine, was increased. Expression levels of tight junction genes and CD4 + CD25 + Foxp3 + T regulatory cells in the mesenteric lymph nodes were synergistically upregulated with the combined treatment. Furthermore, co-administered mice displayed altered cecum microbial diversity and composition with increases in the genus Prevotella. Related changes in the predicted amino and nucleic acid metabolic pathways were also evident, along with increased acetate and butyrate level. Therefore, the synergistic effect of L. gasseri KBL697 and IFX co-administration is a possible method of prevention and treatment for IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Lactobacillus gasseri , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/pathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Immunologic Factors/pharmacology , Inflammatory Bowel Diseases/pathology , Infliximab , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
9.
Food Funct ; 12(1): 340-350, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33325946

ABSTRACT

Gut microbiota play a major role in host physiology and immunity. Inflammatory bowel diseases (IBDs), the important immune-related diseases, can occur through immune system malfunction originating due to dysregulation of the gut microbiota. The aim of this study was to investigate the capabilities and mechanisms of Lactobacillus acidophilus (L. acidophilus) KBL402 and KBL409 treatment in the alleviation of colitis using the in vivo dextran sodium sulfate (DSS)-induced colitis mice model. Various colitis symptoms of mice, including disease activity index score [4.55 ± 0.99 (P < 0.001) and 5.12 ± 0.94 (P < 0.001), respectively], colon length [6.18 ± 0.43 mm (P < 0.001) and 6.62 ± 0.47 mm (P < 0.001), respectively], and colon histological score [(5.33 ± 1.03 (P < 0.001) and 4.00 ± 0.89 (P < 0.01), respectively)], were significantly restored with L. acidophilus KBL402 or KBL409 administration (1 × 109 colony-forming units) for 8 days. Moreover, inflammatory cytokines, chemokines, and myeloperoxidase were downregulated in mice with L. acidophilus treatment. Upregulation of anti-inflammatory cytokine IL-10 or regulatory T cells were discovered with L. acidophilus KBL402 (12.90 ± 7.87 pg mL-1) (P < 0.05) or L. acidophilus KBL409 treatment (10.63 ± 2.70%) (P < 0.05), respectively. Expressions of inflammation-related micro-RNAs (miRs) were also significantly altered in mice with L. acidophilus. Finally, L. acidophilus treatment could restore the diversity of the gut microbiota. Mice with L. acidophilus KBL402 treatment showed a high relative abundance of the genus Akkermansia (0.022 ± 0.017) and Prevotella (0.010 ± 0.006) (P < 0.01). Butyrate and propionate, the major short-chain fatty acids, in the ceca of DSS + KBL402-treated mice were significantly higher than in that of the mice with DSS-induced colitis (0.03 ± 0.02 ng mg-1 and 0.03 ± 0.01 ng mg-1, respectively) (P < 0.05). Our study suggests that L. acidophilus KBL402 and KBL409 could be useful for the prevention or treatment of IBDs in various ways including the modulation of immune responses and miR expression, restoration of the gut microbiota, and production of metabolites.


Subject(s)
Colitis/drug therapy , Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Lactobacillus acidophilus , Probiotics/pharmacology , Animals , Dextran Sulfate , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
10.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33016202

ABSTRACT

Administration of probiotics has been linked to immune regulation and changes in gut microbiota composition, with effects on atopic dermatitis (AD). In this study, we investigated amelioration of the symptoms of AD using Lactobacillus paracasei KBL382 isolated from the feces of healthy Koreans. Mice with Dermatophagoides farinae extract (DFE)-induced AD were fed 1 × 109 CFU d-1 of L. paracasei KBL382 for 4 weeks. Oral administration of L. paracasei KBL382 significantly reduced AD-associated skin lesions, epidermal thickening, serum levels of immunoglobulin E, and immune cell infiltration. L. paracasei KBL382-treated mice showed decreased production of T helper (Th)1-, Th2-, and Th17-type cytokines, including thymic stromal lymphopoietin, thymus, and activation-regulated chemokine, and macrophage-derived chemokine, and increased production of the anti-inflammatory cytokine IL-10 and transforming growth factor-ß in skin tissue. Intake of L. paracasei KBL382 also increased the proportion of CD4+ CD25+ Foxp3+ regulatory T cells in mesenteric lymph nodes. In addition, administration of L. paracasei KBL382 dramatically changed the composition of gut microbiota in AD mice. Administration of KBL382 significantly ameliorates AD-like symptoms by regulating the immune response and altering the composition of gut microbiota.


Subject(s)
Dermatitis, Atopic/therapy , Gastrointestinal Microbiome , Immunomodulation , Lacticaseibacillus paracasei , Probiotics , Animals , Chemokine CCL17/metabolism , Chemokine CCL22/metabolism , Cytokines/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Eosinophils/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Lymph Nodes/immunology , Male , Mast Cells/immunology , Mice , Skin/immunology , Skin/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Thymic Stromal Lymphopoietin
11.
Biochem Biophys Rep ; 23: 100788, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32715107

ABSTRACT

Macrophage metabolic pathways show changes in response to various external stimuli. Especially, increased lipopolysaccharide, an important bacterial component and Toll-like receptor 4 agonist, can induce activity in various macrophage metabolic pathways, including energy production and biosynthesis, as well as high immune responses due to increase in differentiated M1 macrophages. In this study, we confirmed that Lactobacillus paracasei (L. paracasei) KBL382, KBL384 and KBL385, isolated from the feces of healthy Koreans, can modulate various enzymes and membrane transporters related to glycolysis or macrophage polarization including hypoxia-inducible factor 1-alpha (HIF1A), inducible nitric oxide synthase (iNOS) and arginase in stimulated macrophages at the mRNA level, using the in vitro rodent bone-marrow-derived macrophage (BMDM) model. All L. paracasei exhibited significant down-regulatory effects on mRNAs for glycolysis-related enzymes, including lactate dehydrogenase A, solute carrier family 2 member 1, and triosephosphate isomerase. Moreover, L. paracasei treatment could lead to significant reductions in HIF1A or iNOS mRNA, and induced arginase mRNA in the BMDM model. Therefore, further extensive studies should be performed to support the application of L. paracasei, such as in probiotics or therapeutics, in controlling abnormal immune responses related to macrophage.

12.
Cell Host Microbe ; 27(1): 25-40.e6, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31866426

ABSTRACT

Although a link between the gut microbiota and alcohol-related liver diseases (ALDs) has previously been suggested, the causative effects of specific taxa and their functions have not been fully investigated to date. Here, we analyze the gut microbiota of 410 fecal samples from 212 Korean twins by using the Alcohol Use Disorders Identification Test (AUDIT) scales to adjust for host genetics. This analysis revealed a strong association between low AUDIT scores and the abundance of the butyrate-producing genus Roseburia. When Roseburia spp. are administered to ALD murine models, both hepatic steatosis and inflammation significantly improve regardless of bacterial viability. Specifically, the flagellin of R. intestinalis, possibly through Toll-like receptor 5 (TLR5) recognition, recovers gut barrier integrity through upregulation of the tight junction protein Occludin and helps to restore the gut microbiota through elevated expression of IL-22 and REG3γ. Our study demonstrates that Roseburia spp. improve the gut ecosystem and prevent leaky gut, leading to ameliorated ALDs.


Subject(s)
Clostridiales/metabolism , Fatty Liver, Alcoholic/therapy , Gastrointestinal Microbiome , Adult , Alcohol Drinking/adverse effects , Alcohol-Related Disorders/pathology , Animals , Clostridiales/isolation & purification , Dysbiosis/microbiology , Fatty Liver, Alcoholic/metabolism , Feces/microbiology , Female , Flagellin/metabolism , Humans , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Occludin/metabolism
13.
Front Mol Biosci ; 6: 92, 2019.
Article in English | MEDLINE | ID: mdl-31612141

ABSTRACT

Gut microbiota play an important role in immune responses and energy metabolism. In this study, we evaluated whether administration of Lactobacillus fermentum (L. fermentum) KBL375 isolated from healthy Korean feces improves the atopic dermatitis using the house dust mite (Dermatophagoides farinae)-induced atopic dermatitis (AD) mouse model. Administration of L. fermentum KBL375 significantly decreased dermatitis score, ear and dorsal thickness, and serum immunoglobulin E level in AD-induced mice. Significant reductions in mast cells and eosinophils were discovered in skin tissues from L. fermentum KBL375-treated mice. T helper 2 cell-related cytokines interleukin (IL)-4, IL-5, IL-13, and IL-31 significantly decreased, and anti-inflammatory cytokine IL-10 or transforming growth factor-ß increased in skin tissues from L. fermentum KBL375-treated mice. In addition to phenotypic changes in skin tissues, L. fermentum KBL375 treatment induced an increase in the CD4+CD25+Foxp3+ cell population in mesenteric lymph nodes. Taxonomic and functional analyses of gut microbiota showed significantly higher cecum bacterial diversities and abundances including genus Bilophila, Dorea, and Dehalobacterium in L. fermentum KBL375-treated mice. Metabolic analysis of the cecum also showed significant changes in the levels of various amino acids including methionine, phenylalanine, serine, and tyrosine, as well as short chain fatty acids such as acetate, butyrate, and propionate in AD-induced mice due to L. fermentum KBL375 treatment. These altered metabolites in AD-induced mice returned to the levels similar to those in control mice when treated with L. fermentum KBL375. Therefore, L. fermentum KBL375 could be useful for AD treatment by modulating the immune system and inducing various metabolites.

14.
Gut Microbes ; 10(6): 696-711, 2019.
Article in English | MEDLINE | ID: mdl-30939976

ABSTRACT

We evaluated immunometabolic functions of novel Lactobacillus fermentum strains (KBL374 and KBL375) isolated from feces of healthy Koreans. The levels of inflammatory cytokines, such as interleukin (IL)-2, interferon-γ, IL-4, IL-13, and IL-17A, were decreased, and that of the anti-inflammatory cytokine IL-10 was increased, in human peripheral blood mononuclear cells (PBMCs) treated with the L. fermentum KBL374 or KBL375 strain. When these strains were orally administered to mice with dextran sulfate sodium (DSS)-induced colitis, both L. fermentum KBL374 and KBL375 showed beneficial effects on body weight, disease activity index score, colon length, cecal weight, and histological scores. Furthermore, both L. fermentum KBL374 and KBL375 modulated the innate immune response by improving gut barrier function and reducing leukocyte infiltration. Consistent with the PBMC data, both L. fermentum KBL374- and KBL375-treated DSS mice demonstrated decreased Th1-, Th2-, and Th17-related cytokine levels and increased IL-10 in the colon compared with the DSS control mice. Administration of L. fermentum KBL374 or KBL375 to mice increased the CD4+CD25+Foxp3+Treg cell population in mesenteric lymph nodes. Additionally, L. fermentum KBL374 or KBL375 administration reshaped and increased the diversity of the gut microbiota. In particular, L. fermentum KBL375 increased the abundance of beneficial microorganisms, such as Lactobacillus spp. and Akkermansia spp. Both L. fermentum KBL374 and KBL375 may alleviate inflammatory diseases, such as inflammatory bowel disease, in the gut by regulating immune responses and altering the composition of gut microbiota.


Subject(s)
Colitis/immunology , Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Limosilactobacillus fermentum/physiology , Probiotics/pharmacology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Colitis/chemically induced , Colitis/diet therapy , Colon/immunology , Colon/metabolism , Colon/microbiology , Colon/pathology , Cytokines/immunology , Dextran Sulfate/toxicity , Feces/chemistry , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Immunomodulation , Leukocytes, Mononuclear/immunology , Mice, Inbred C57BL , Probiotics/administration & dosage , T-Lymphocytes, Regulatory/immunology , Tight Junction Proteins/metabolism
15.
Mol Cell Endocrinol ; 409: 11-20, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-25841764

ABSTRACT

Heme oxygenase-1 (HO-1) has long been considered to be an endogenous antioxidant. However, the role of HO-1 is highly controversial in developing metabolic diseases. We hypothesized that HO-1 plays a role in maintaining bone mass by alleviating a redox imbalance. We investigated its role in bone remodeling. The absence of HO-1 in mice led to decreased bone mass with elevated activity and number of OCs, as well as higher serum levels of reactive oxygen species (ROS). HO-1, which is constitutively expressed at a high level in osteoclast (OC) precursors, was down-regulated during OC differentiation. HO-1 deficiency in bone marrow macrophages (BMM) in vitro resulted in increased numbers and activity of OCs due to enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. This was associated with increased activation of nuclear factor-κB and of nuclear factor of activated T-cells, cytoplasmic 1 along with elevated levels of intracellular calcium and ROS. Decreased bone mass in the absence of HO-1 appears to be mainly due to increased osteoclastogenesis and bone resorption resulting from elevated RANKL signaling in OCs. Our data highlight the potential role of HO-1 in maintaining bone mass by negatively regulating OCs.


Subject(s)
Bone Density , Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , Osteoclasts/physiology , Oxidation-Reduction , Animals , Bone Remodeling , Bone Resorption , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Heme Oxygenase-1/deficiency , Macrophages/physiology , Membrane Proteins/deficiency , Mice , RANK Ligand/genetics , RANK Ligand/metabolism , Reactive Oxygen Species/blood , Signal Transduction
16.
J Endocrinol ; 220(1): 25-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24287621

ABSTRACT

To elucidate the role of tumor necrosis factor receptor superfamily member 14 (TNFRSF14) in metabolic disturbance due to loss of ovarian function, ovariectomy (OVX) was performed in TNFRSF 14-knockout mice. OVX increased fat mass and infiltration of highly inflammatory CD11c cells in the adipose tissue (AT), which was analyzed by flow cytometry, and resulted in disturbance of glucose metabolism, whereas TNFRSF14 deficiency attenuated these effects. TNFRSF14 deficiency decreased recruitment of CD11c-expressing cells in AT and reduced the polarization of bone marrow-derived macrophages to M1. Upon engagement of LIGHT, a TNFRSF14 ligand, TNFRSF14 enhanced the expression of CD11c via generation of reactive oxygen species, suggesting a role of TNFRSF14 as a redox modulator. TNFRSF14 participated in OVX-induced AT inflammation via upregulation of CD11c, resulting in metabolic perturbation. TNFRSF14 could be used as a therapeutic target for the treatment of postmenopausal syndrome by reducing AT inflammation.


Subject(s)
Adipose Tissue/metabolism , Inflammation/metabolism , Ovariectomy , Receptors, Tumor Necrosis Factor, Member 14/deficiency , Adipose Tissue/pathology , Animals , CD11c Antigen/genetics , CD11c Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Energy Metabolism/genetics , Female , Flow Cytometry , Gene Expression , Inflammation/genetics , Inflammation/pathology , Lymphocyte Count , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
17.
PLoS One ; 8(8): e72108, 2013.
Article in English | MEDLINE | ID: mdl-23977220

ABSTRACT

BACKGROUND: Loss of ovarian function is highly associated with an elevated risk of metabolic disease. Monocyte chemoattractant protein-1 (MCP-1, C-C chemokine ligand 2) plays critical roles in the development of inflammation, but its role in ovariectomy (OVX)-induced metabolic disturbance has not been known. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the role of MCP-1 in OVX-induced metabolic perturbation using MCP-1-knockout mice. OVX increased fat mass, serum levels of MCP-1, macrophage-colony stimulating factor (M-CSF), and reactive oxygen species (ROS), whereas MCP-1 deficiency attenuated these. OVX-induced increases of visceral fat resulted in elevated levels of highly inflammatory CD11c-expressing cells as well as other immune cells in adipose tissue, whereas a lack of MCP-1 significantly reduced all of these levels. MCP-1 deficiency attenuated activation of phospholipase Cγ2, transforming oncogene from Ak strain, and extracellular signal-regulated kinase as well as generation of ROS, which is required for up-regulating CD11c expression upon M-CSF stimulation in bone marrow-derived macrophages. CONCLUSIONS/SIGNIFICANCE: Our data suggested that MCP-1 plays a key role in developing metabolic perturbation caused by a loss of ovarian functions through elevating CD11c expression via ROS generation.


Subject(s)
Chemokine CCL2/deficiency , Metabolic Syndrome/metabolism , Oxidative Stress , Adiposity , Animals , CD11c Antigen/metabolism , Chemokine CCL2/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Inflammation/metabolism , Insulin Resistance , Intra-Abdominal Fat/pathology , Macrophage Activation , Macrophage Colony-Stimulating Factor/physiology , Macrophages/immunology , Macrophages/metabolism , Metabolic Syndrome/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovariectomy , Phospholipase C gamma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Subcutaneous Fat/pathology
18.
Biochem Pharmacol ; 85(8): 1145-52, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23380478

ABSTRACT

Carbon monoxide (CO) has been shown to have remarkable therapeutic value at low dosage by suppressing inflammation via inhibitory effects on macrophages, which are also precursors of osteoclasts (OC). The objective of the present study was to determine whether CO limits bone loss through its effects on osteoclastogenesis. Intraperitoneal injection of CO-releasing molecule 2 (CORM2) into mice with reduced bone mass due to ovariectomy (OVX) resulted in significantly elevated bone mass. Increased serum levels of collagen-type I fragments, tartrate-resistant acid phosphatase 5b, and reactive oxygen species (ROS) due to OVX were also decreased when treated with CORM2. In vitro, CORM2 inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced OC formation without affecting bone resorption. CORM2 reduced long-lasting ROS levels and nuclear factor-κB (NF-κB) activation in response to RANKL. Inhibition of NADPH oxidase partially reduced the inhibitory effect of CO. CO induced increase of peroxiredoxin 1 (PRX1) in BMM. Down-regulation of PRX1 reduced the inhibitory effect of CO on OC formation and sustained the ROS levels induced by RANKL, suggesting that CO reduces generation of ROS and scavenges ROS to inhibit osteoclastogenesis. These data suggest that the inhibitory effect of CO on osteoclastogenesis is caused by impaired RANKL signaling through defective NF-κB activation and reduced levels of long-lasting ROS. These changes result in decreased bone loss. Our data highlight the potential utility of CO for ameliorating bone loss induced by loss of ovarian function.


Subject(s)
Bone Resorption/prevention & control , Carbon Monoxide/therapeutic use , Osteoclasts/drug effects , Osteogenesis/drug effects , Ovariectomy , Animals , Female , Mice , Mice, Inbred C57BL , RANK Ligand/physiology , Reactive Oxygen Species/metabolism , Signal Transduction
19.
Am J Physiol Endocrinol Metab ; 304(7): E703-10, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23360825

ABSTRACT

The developmentally regulated GTP-binding protein-2 (DRG2) is a novel subclass of GTP-binding proteins. Many functional characteristics of osteoclasts (OC) are associated with small GTPases. We hypothesized that DRG2 affects bone mass via modulating OC activity. Using DRG2 transgenic mice, we investigated the role of DRG2 in bone remodeling. DRG2 overexpression caused a decrease in bone mass and an increase in the number and activity of OC in vivo. DRG2 overexpression increased fusion, spreading, survival, and resorption activity of OC in vitro. Downregulation of DRG2 by siRNA decreased fusion, spreading, and survival of OC, supporting the observations found in DRG2 transgenic OC. Transgenic mature OCs were larger, with actin rings and higher ERK, Akt, Rac1 and Rho activities than wild-type OCs. Inhibition of these proteins abolished the effects of DRG2 on formation of large OCs with actin rings, implying that DRG2 affects cytoskeleton reorganization in a Rac1/Rho/ERK/Akt-dependent manner. In summary, DRG2 is associated with survival and cytoskeleton organization of OC under influence of macrophage colony-stimulating factor, and its overexpression leads to elevated bone resorptive activity of OC, resulting in bone loss.


Subject(s)
Bone Remodeling/physiology , Bone Resorption/etiology , GTP-Binding Proteins/metabolism , Osteoclasts/metabolism , Signal Transduction/physiology , Animals , Bone Remodeling/drug effects , Bone Remodeling/genetics , Cell Fusion , Cell Movement/drug effects , Cell Movement/physiology , Cell Survival/drug effects , Cell Survival/physiology , GTP-Binding Proteins/drug effects , GTP-Binding Proteins/genetics , Macrophage Colony-Stimulating Factor/drug effects , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Transgenic , Osteoclasts/drug effects , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects
20.
Am J Physiol Endocrinol Metab ; 303(11): E1296-303, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22949031

ABSTRACT

The aim of the present study was to evaluate the effect of fibrinogen on number and function of osteoclasts (OC) consequently resulting in bone loss. It was hypothesized that the enhanced level of released fibrinogen due to loss of ovarian function caused bone loss by acting on OCs. Bone loss was induced by ovariectomy (OVX) in mice and analyzed by micro-CT. The effect of fibrinogen on OCs was evaluated by tartrate-resistant acid phosphatase, annexin V, actin staining, pit formation observed on dentine slices, and Western blotting. Exogenous fibrinogen increased OC survival, actin ring formation, and bone resorption in vitro. The effect of fibrinogen was dependent on ß(3)-integrin, which is a marker for mature OCs. Fibrinogen induced the activation of transforming oncogene from Ak strain (Akt), Ras-related C3 botulinum toxin substrate 1 (Rac1), and Rho family of GTPase (Rho) and the degradation of the Bcl-2 interacting mediator of cell death (Bim) in a manner similar to macrophage colony-stimulating factor (M-CSF). OVX increased plasma fibrinogen and serum M-CSF together with elevated actin ring formation and bone loss. The increased fibrinogen level due to loss of ovarian function may contribute, at least partly, to bone loss through the enhanced number and activity of OCs.


Subject(s)
Actin Cytoskeleton/metabolism , Bone Resorption/metabolism , Fibrinogen/physiology , Osteoclasts/physiology , Osteoporosis/metabolism , Actins/metabolism , Analysis of Variance , Animals , Bone Marrow Cells/physiology , Bone Resorption/complications , Bone Resorption/diagnostic imaging , Cell Differentiation , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Female , Intracellular Signaling Peptides and Proteins/metabolism , Macrophage Colony-Stimulating Factor/blood , Male , Mice , Mice, Inbred C57BL , Osteoporosis/complications , Ovariectomy , Postmenopause/metabolism , Receptors, Vitronectin/metabolism , Signal Transduction/physiology , Statistics, Nonparametric , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL