Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
PLoS One ; 19(5): e0303871, 2024.
Article in English | MEDLINE | ID: mdl-38768233

ABSTRACT

This study aimed to investigate the impact of the cumulative burden of metabolic syndrome (MetS) on the incidence of retinal vein occlusion (RVO) in young adults. We included 1,408,093 subjects aged ≥20 and <40 years without a history of RVO who underwent four consecutive annual health examinations during 2009-2012 from the database of the Korean National Health Insurance Service. The metabolic burden was evaluated based on the cumulative number of MetS diagnoses at each health examination (0-4 times) and the cumulative number of each MetS component diagnosed at each health examination (0-4 times per MetS component). Cox proportional hazards models were used to estimate the risk of RVO according to metabolic burden. The risk of RVO was positively correlated with the cumulative number of MetS diagnoses over the four health examinations. All five MetS components were independently associated with an increased risk of RVO. Subgroup analysis for the impact of MetS on RVO occurrence revealed that MetS had a greater impact on female subjects (P <0.001). Prompt detection of metabolic derangements and their treatment might be important to decrease the risk of RVO in young adults, especially women.


Subject(s)
Metabolic Syndrome , Retinal Vein Occlusion , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/complications , Retinal Vein Occlusion/epidemiology , Retinal Vein Occlusion/etiology , Female , Male , Adult , Republic of Korea/epidemiology , Risk Factors , Young Adult , Proportional Hazards Models , Incidence
2.
ACS Nano ; 18(20): 13277-13285, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728175

ABSTRACT

Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.


Subject(s)
Brain , Neurons , Synapses , Animals , Brain/metabolism , Synapses/metabolism , Synapses/chemistry , Neurons/metabolism , Optogenetics , Dopamine/metabolism , Mice , Temperature
3.
Mar Drugs ; 22(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786608

ABSTRACT

We identified a new human voltage-gated potassium channel blocker, NnK-1, in the jellyfish Nemopilema nomurai based on its genomic information. The gene sequence encoding NnK-1 contains 5408 base pairs, with five introns and six exons. The coding sequence of the NnK-1 precursor is 894 nucleotides long and encodes 297 amino acids containing five presumptive ShK-like peptides. An electrophysiological assay demonstrated that the fifth peptide, NnK-1, which was chemically synthesized, is an effective blocker of hKv1.3, hKv1.4, and hKv1.5. Multiple-sequence alignment with cnidarian Shk-like peptides, which have Kv1.3-blocking activity, revealed that three residues (3Asp, 25Lys, and 34Thr) of NnK-1, together with six cysteine residues, were conserved. Therefore, we hypothesized that these three residues are crucial for the binding of the toxin to voltage-gated potassium channels. This notion was confirmed by an electrophysiological assay with a synthetic peptide (NnK-1 mu) where these three peptides were substituted with 3Glu, 25Arg, and 34Met. In conclusion, we successfully identified and characterized a new voltage-gated potassium channel blocker in jellyfish that interacts with three different voltage-gated potassium channels. A peptide that interacts with multiple voltage-gated potassium channels has many therapeutic applications in various physiological and pathophysiological contexts.


Subject(s)
Peptides , Potassium Channel Blockers , Potassium Channels, Voltage-Gated , Scyphozoa , Animals , Humans , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Peptides/pharmacology , Peptides/chemistry , Amino Acid Sequence , Cnidarian Venoms/pharmacology , Cnidarian Venoms/chemistry , Sequence Alignment
4.
Article in English | MEDLINE | ID: mdl-38599290

ABSTRACT

BACKGROUND: Neutrophilic asthma (NA) is a severe asthma phenotype associated with steroid resistance and IL-1ß overproduction; however, the exact mechanism remains unclear. Moreover, the dysfunction of TNF-α signaling pathway, a regulator of IL-1ß production, was associated with the deficiency of ovarian tumor protease deubiquitinase with linear linkage specificity (otulin) in autoimmune patients. OBJECTIVE: We hypothesized that otulin downregulation in macrophages (Mφ) could trigger Mφ activation via the nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling pathway. METHODS: We assessed the expressions of otulin in blood monocyte subsets from NA patients and in alveolar Mφ from NA mice. Additionally, we evaluated the functional consequences of otulin deficiency in bone marrow-derived Mφ. The effects of inhibiting receptor-interacting protein kinase (RIPK)-1 and RIPK-3 on neutrophils and group 3 innate lymphoid cells (ILC3s) were assessed in vitro and in vivo. RESULTS: When comparing nonclassical monocytes, a significant downregulation of otulin in the intracellular components was observed in NA patients compared to healthy controls (P = .005). Moreover, isolated alveolar Mφ from the NA mice exhibited lower otulin expression compared to those from control mice. After otulin knockdown in bone marrow-derived Mφ, we observed spontaneous IL-1ß production depending on NLRP3 inflammasome. Moreover, the infiltrated neutrophils and ILC3s were significantly decreased by combined treatment of RIPK-1 and RIPK-3 inhibitors through blocking IL-1ß release in NA. CONCLUSIONS: IL-1ß overproduction caused by a deficiency of otulin, an upstream triggering factor, could be a promising diagnostic and therapeutic target for NA.

5.
J Cell Mol Med ; 28(8): e18356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38668995

ABSTRACT

Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1ß (IL-1ß) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.


Subject(s)
Anti-Inflammatory Agents , Asthma , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils , Reactive Oxygen Species , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Inflammasomes/metabolism , Asthma/metabolism , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Mice , Anti-Inflammatory Agents/pharmacology , Humans , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Reactive Oxygen Species/metabolism , Lipopolysaccharides , NIMA-Related Kinases/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Plant Extracts/pharmacology , THP-1 Cells
6.
Ophthalmic Epidemiol ; : 1-10, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507599

ABSTRACT

PURPOSE: To evaluate the prevalence and risk factors of age-related macular degeneration (AMD) in the Korean population. METHODS: In this cross-sectional study based on the Korea National Health and Nutrition Examination Survey (2017-2020) data 13,737 participants aged ≥ 40 years with assessable fundus images were included. The prevalence and risk factors of AMD were evaluated. The prevalence of early AMD, geographic atrophy (GA), and neovascular AMD were also assessed. Logistic regression analyses were used to identify risk factors. RESULTS: The prevalence (95% confidence interval [CI]) of AMD was 13.94% (13.15-14.72). The prevalence (95% CI) of early AMD, GA, and neovascular AMD was 13.07% (12.29-13.85), 0.26% (0.17-0.35), and 0.61% (0.47-0.75), respectively. The prevalence increased with age; it was 3.61%, 11.33%, 20.31%, 31.37%, and 33.98% in participants in their 40s, 50s, 60s, 70s, and ≥ 80 years, respectively. In multivariate analysis, AMD was positively associated with older age (p < 0.001; odds ratio [OR], 1.08; 95% CI, 1.07-1.09), male sex (p = 0.014; OR, 1.27; 95% CI, 1.05-1.53), and lower degree of education (p < 0.001; OR, 1.36 (for junior high school graduates); 95% CI, 1.12-1.65). CONCLUSIONS: AMD was detected in approximately one-third of individuals aged ≥ 70 years, thus indicating that AMD is a common disease among older Koreans. Regular fundus examinations in populations with risk factors for AMD as well as education on methods to prevent or delay AMD progression, such as the Mediterranean diet, are necessary.

7.
Sci Adv ; 10(13): eadj9600, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536932

ABSTRACT

Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.


Subject(s)
Matrix Attachment Region Binding Proteins , Mitochondrial Diseases , Neoplasms , Humans , Mice , Animals , T-Lymphocytes, Regulatory , Ketoglutaric Acids/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Cytokines/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
8.
Gut Microbes ; 16(1): 2333463, 2024.
Article in English | MEDLINE | ID: mdl-38545880

ABSTRACT

The ectopic gut colonization by orally derived pathobionts has been implicated in the pathogenesis of various gastrointestinal diseases, including inflammatory bowel disease (IBD). For example, gut colonization by orally derived Klebsiella spp. has been linked to IBD in mice and humans. However, the mechanisms whereby oral pathobionts colonize extra-oral niches, such as the gut mucosa, remain largely unknown. Here, we performed a high-density transposon (Tn) screening to identify genes required for the adaptation of an oral Klebsiella strain to different mucosal sites - the oral and gut mucosae - at the steady state and during inflammation. We find that K. aerogenes, an oral pathobiont associated with both oral and gut inflammation in mice, harbors a newly identified genomic locus named "locus of colonization in the inflamed gut (LIG)" that encodes genes related to iron acquisition (Sit and Chu) and host adhesion (chaperon usher pili [CUP] system). The LIG locus is highly conserved among K. aerogenes strains, and these genes are also present in several other Klebsiella species. The Tn screening revealed that the LIG locus is required for the adaptation of K. aerogenes in its ectopic niche. In particular, we determined K. aerogenes employs a CUP system (CUP1) present in the LIG locus for colonization in the inflamed gut, but not in the oral mucosa. Thus, oral pathobionts likely exploit distinct adaptation mechanisms in their ectopically colonized intestinal niche compared to their native niche.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Klebsiella/genetics , Inflammatory Bowel Diseases/pathology , Inflammation , Mouth Mucosa
9.
Adv Mater ; : e2313625, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552258

ABSTRACT

Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies. To address these issues, a neural interface utilizing freestanding CNT-sheets drawn from CNT-forests integrated onto thermally drawn functional polymer fibers is proposed. This approach yields a device with structural alignment, resulting in exceptional electrical, mechanical, and electrochemical properties while retaining biocompatibility for prolonged periods of implantation. This Structurally Aligned Multifunctional neural Probe (SAMP) employing forest-drawn CNT sheets demonstrates in vivo capabilities in neural recording, neurotransmitter detection, and brain/spinal cord circuit manipulation via optogenetics, maintaining functionality for over a year post-implantation. The straightforward fabrication method's versatility, coupled with the device's functional reliability, underscores the significance of this technique in the next-generation carbon-based implants. Moreover, the device's longevity and multifunctionality position it as a promising platform for long-term neuroscience research.

10.
Sci Rep ; 14(1): 5237, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38433281

ABSTRACT

Inflammation is implicated as a cause in many diseases. Most of the anti-inflammatory agents in use are synthetic and there is an unmet need for natural substance-derived anti-inflammatory agents with minimal side effects. Aiouea padiformis belongs to the Lauraceae family and is primarily found in tropical regions. While some members of the Aiouea genus are known to possess anti-inflammatory properties, the anti-inflammatory properties of Aiouea padiformis extract (AP) have not been investigated. In this study, we aimed to examine the anti-inflammatory function of AP through the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and elucidate the underlying mechanisms. Treatment with AP inhibited the secretion of interleukin-1 beta (IL-1ß) mediated by NLRP3 inflammasome in J774A.1 and THP-1 cells without affecting the viability. In addition, AP treatment did not influence NF-κB signaling, potassium efflux, or intracellular reactive oxygen species (ROS) production-all of which are associated with NLRP3 inflammasome activation. However, intriguingly, AP treatment significantly reduced the ATPase activity of NLRP3, leading to the inhibition of ASC oligomerization and speck formation. Consistent with cellular experiments, the anti-inflammatory property of AP in vivo was also evaluated using an LPS-induced inflammation model in zebrafish, demonstrating that AP hinders NLRP3 inflammasome activation.


Subject(s)
Lauraceae , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Inflammasomes , Zebrafish , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Adenosine Triphosphatases , Plant Extracts/pharmacology
11.
J Ethnopharmacol ; 323: 117711, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38176663

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Guarea genus comprises tropical and subtropical terrestrial herbs inhabiting Central and South America. These plants, including Guarea guidonia (L.) Sleumer, have anti-inflammatory, analgesic, antibacterial, antiviral, and immune-enhancing properties. AIM OF THE STUDY: Although various species of the Guarea genus are known for their medicinal properties, comprehensive data on their anti-inflammatory effects remain limited. Therefore, we investigated the NLRP3 inflammasome-inhibiting effects of the Guarea genus in this study. MATERIALS AND METHODS: To evaluate the anti-inflammatory activities of 18 members of the Guarea genus, we treated NLRP3 inflammasome activators with their extracts in LPS-primed J774A.1 and THP-1 cells. Cell viability was determined by water soluble tetrazolium salt (WST) and cytokine production, protein expression, and nuclear fractionation were determined by western blotting. Reactive oxygen species (ROS) production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization were measured using confocal microscopic analysis. Inflammation-induced zebrafish was used in the in vivo experiments. RESULTS: Among the 18 Guarea members tested, Guarea microcarpa C. DC. extract (GM) exhibited no cytotoxicity and specifically suppressed the activation of the NLRP3 inflammasome, but not of the AIM2 or NLRC4 inflammasomes, by inhibiting the ATPase activity of NLRP3. This was achieved without affecting NF-κB signaling, potassium efflux, or intracellular ROS production, all of which are involved in NLRP3 activation. The reduced ATPase activity of NLRP3 led to decreased ASC oligomerization. Furthermore, GM exhibited anti-inflammatory effects in vivo. Additionally, GM treatment alleviated inflammation at the organismal level in an LPS-induced inflammation model using zebrafish embryos. CONCLUSION: Our results demonstrate the anti-inflammatory effects of GM via suppressing the NLRP3 inflammasome. Therefore, GM can be a potential therapeutic candidate for various inflammatory diseases caused by aberrant NLRP3 inflammasome activation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Zebrafish , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Caspase 1/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , NF-kappa B/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Adenosine Triphosphatases , Interleukin-1beta/metabolism
12.
Ophthalmic Epidemiol ; : 1-8, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265052

ABSTRACT

PURPOSE: To evaluate the bilateral involvement of age-related macular degeneration (AMD) in South Koreans. METHODS: This was a cross-sectional study of the Korean National Health and Nutrition Examination Survey (2017-2020). This study included 13,737 participants aged 40 years or older. Participants were evaluated to determine the prevalence of bilateral early and late AMD. In cases in which exudative AMD or geographic atrophy (GA) was diagnosed in a single eye, the fellow eye was evaluated to determine the presence and type of late AMD. RESULTS: The overall prevalence of bilateral AMD was 6.12% (95% confidence interval [CI], 5.63-6.61). The prevalence of bilateral early AMD was 5.71% (95% CI, 5.24-6.18), while that of late AMD was 0.14% (95% CI, 0.08-0.20). The prevalence of the bilateral involvement of late AMD increased with age. A 0.02% prevalence (95% CI, 0.00-0.06) of late AMD was observed in participants aged 50-59. The prevalence increased to 0.08% (95% CI, 0.00-0.18) in participants aged 60-69, while the prevalence in participants aged 70-79 and over 80 was 0.45% (95% CI, 0.12-0.78) and 1.97% (95% CI, 0.75-3.19), respectively. The prevalence of early AMD in one eye and late AMD in the fellow eye was 0.26% (95% CI, 0.16-0.36). CONCLUSIONS: An assessment of the incidence of AMD revealed that a significant number of persons had bilateral involvement. The treatment burden may significantly increase for participants with bilateral late AMD compared to those with unilateral involvement. Therefore, the study may be helpful with the establishment of private and national insurance policies.

13.
Sci Adv ; 10(3): eadk5260, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232166

ABSTRACT

High-fidelity and comfortable recording of electrophysiological (EP) signals with on-the-fly setup is essential for health care and human-machine interfaces (HMIs). Microneedle electrodes allow direct access to the epidermis and eliminate time-consuming skin preparation. However, existing microneedle electrodes lack elasticity and reliability required for robust skin interfacing, thereby making long-term, high-quality EP sensing challenging during body movement. Here, we introduce a stretchable microneedle adhesive patch (SNAP) providing excellent skin penetrability and a robust electromechanical skin interface for prolonged and reliable EP monitoring under varying skin conditions. Results demonstrate that the SNAP can substantially reduce skin contact impedance under skin contamination and enhance wearing comfort during motion, outperforming gel and flexible microneedle electrodes. Our wireless SNAP demonstration for exoskeleton robot control shows its potential for highly reliable HMIs, even under time-dynamic skin conditions. We envision that the SNAP will open new opportunities for wearable EP sensing and its real-world applications in HMIs.


Subject(s)
Exoskeleton Device , Robotics , Humans , Adhesives , Reproducibility of Results , Skin , Electrodes
14.
Hellenic J Cardiol ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072307

ABSTRACT

BACKGROUND: Sex disparities in cardiogenic shock (CS) treatment are controversial, and the prognostic implications of sex remain unclear in CS caused by acute myocardial infarction (AMI). OBJECTIVES: This study aimed to evaluate the prognostic effect of sex according to the severity of CS in patients undergoing percutaneous coronary intervention (PCI) for AMI complicated by CS. METHODS: We assessed 695 patients from 12 tertiary centers in South Korea who underwent PCI for AMI complicated by CS, and analyzed outcomes by sex (female [n = 184] vs. male [n = 511]). We compared a 12-month patient-oriented composite endpoint (POCE, defined as a composite of all-cause mortality, myocardial infarction, re-hospitalization due to heart failure, and repeat revascularization) between the sexes, respective of SCAI shock stage C&D or E. Propensity score-matched analysis was performed to reduce bias. RESULTS: We found that the female group was older and had higher vasoactive-inotropic and IABP-SHOCK II scores than the male group, with findings consistent across SCAI shock stages. During the 12-month follow-up period, multivariate analysis revealed no significant differences in POCE (HR 1.01, 95% CI 0.67-1.53, p = 0.963 for SCAI stage C&D, HR 1.24, 95% CI 0.84-1.84, p = 0.286 for SCAI stage E) between females and males. After propensity score matching, the incidence of POCE (HR 1.47, 95% CI 0.79-2.72, p = 0.220 for SCAI stage C&D, HR 0.88, 95% CI 0.49-1.57, p = 0.665 for SCAI stage E) was similar between sexes. CONCLUSIONS: Sex does not appear to influence the risk of 12-month POCE in patients treated with PCI for CS caused by AMI, irrespective of shock severity. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02985008. RESCUE (REtrospective and prospective observational Study to investigate Clinical oUtcomes and Efficacy of left ventricular assist device for Korean patients with cardiogenic shock), NCT02985008, Registered December 5, 2016 - retrospectively and prospectively. IRB INFORMATION: This study was approved by the institutional review board of Samsung Medical Center (Reference number: 2016-03-130).

15.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003216

ABSTRACT

The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFß1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFß1) protein secretion, and the effect of MSC-TetOff-TGFß1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFß1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFß1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFß1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cells , Nucleus Pulposus , Humans , Rats , Animals , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Mesenchymal Stem Cells/metabolism
16.
Front Cardiovasc Med ; 10: 1168054, 2023.
Article in English | MEDLINE | ID: mdl-37781313

ABSTRACT

Background and aims: It is difficult to document atrial fibrillation (AF) on ECG in patients with non-persistent atrial fibrillation (non-PeAF). There is limited understanding of whether an AI prediction algorithm could predict the occurrence of non-PeAF from the information of normal sinus rhythm (SR) of a 12-lead ECG. This study aimed to derive a precise predictive AI model for screening non-PeAF using SR ECG within 4 weeks. Methods: This retrospective cohort study included patients aged 18 to 99 with SR ECG on 12-lead standard ECG (10 seconds) in Ewha Womans University Medical Center for 3 years. Data were preprocessed into three window periods (which are defined with the duration from SR to non-PeAF detection) - 1 week, 2 weeks, and 4 weeks from the AF detection prospectively. For experiments, we adopted a Residual Neural Network model based on 1D-CNN proposed in a previous study. We used 7,595 SR ECGs (extracted from 215,875 ECGs) with window periods of 1 week, 2 weeks, and 4 weeks for analysis. Results: The prediction algorithm showed an AUC of 0.862 and an F1-score of 0.84 in the 1:4 matched group of a 1-week window period. For the 1:4 matched group of a 2-week window period, it showed an AUC of 0.864 and an F1-score of 0.85. Finally, for the 1:4 matched group of a 4-week window period, it showed an AUC of 0.842 and an F1-score of 0.83. Conclusion: The AI prediction algorithm showed the possibility of risk stratification for early detection of non-PeAF. Moreover, this study showed that a short window period is also sufficient to detect non-PeAF.

17.
Ecotoxicol Environ Saf ; 266: 115544, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37827097

ABSTRACT

The prevalence of atopic dermatitis (AD) is increasing and environmental factors are receiving attention as contributing causes. Indoor air pollutants (IAPs), especially particulate matter (PM) can alter epigenetic markers, DNA methylation (DNAm). Although DNAm-mediated epigenetic changes have been reported to modulate the pathogenesis of AD, their role at high risk of exposure to PM is still unclear. The study investigated the effects of exposure to IAPs in the development of AD and epigenetic changes through DNAm in companion atopic dogs that share indoor environment with their owners. Dogs were divided into two groups: AD (n = 47) and controls (n = 21). The IAPs concentration in each household was measured for 48 h, and a questionnaire on the residential environment was completed in all dogs. Eighteen dogs with AD and 12 healthy dogs were selected for DNAm analysis. In addition, clinical and immunological evaluations were conducted. The concentrations of PM2.5, PM10, and volatile organic compounds (VOCs) were significantly higher in the AD group. Moreover, there were more significant methylation differences in the LDLRAD4, KHSRP, and CTDSP2 genes in connection with PM10 in AD group compared to the controls. The degree of methylation of the LDLRAD4 and CTDSP2 genes was also correlated with related protein productions. The present study revealed that exposure to high indoor PM can cause epigenetic development of AD by methylation of the LDLRAD4, KHSRP, and CTDSP2 genes in dogs. Under the concept of "One Health," improving indoor environments should be considered to prevent the development of AD.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Dermatitis, Atopic , Dogs , Animals , Particulate Matter/toxicity , Particulate Matter/analysis , Environmental Exposure/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/genetics , Epigenesis, Genetic , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Environmental Monitoring
18.
Heliyon ; 9(10): e20760, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860502

ABSTRACT

The clinical anteroposterior (AP) chest images taken with a mobile radiography system were analyzed in this study to utilize the clinical exposure index (EI) as a patient dose-monitoring tool. The digital imaging and communications in medicine header of 6048 data points exposed under the 90 kVp and 2.5 mAs were extracted using Python for identifying the distribution of clinical EI. Even under the same exposure conditions, the clinical EI distribution was 137.82-4924.38. To determine the cause, the effect of a patient's body shape on EI was confirmed using actual clinical chest AP image data binarized into 0 and 255-pixel values using Python. As a result, the relationship between the direct X-ray area of the chest AP image, the higher the clinical EI, the larger the rate of the direct X-ray area. A conversion equation was also derived to infer entrance surface dose through clinical EI based on the patient thickness. This confirmed the possibility of directly monitoring patient dose through EI without a dosimeter in real-time. Therefore, to use the clinical EI of the mobile radiography system as a patient dose-monitoring tool, the derivation method of clinical EI considers several factors, such as the relationship between patient factors.

19.
Diagnostics (Basel) ; 13(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37685387

ABSTRACT

This study aims to compare the effectiveness of using discrete heartbeats versus an entire 12-lead electrocardiogram (ECG) as the input for predicting future occurrences of arrhythmia and atrial fibrillation using deep learning models. Experiments were conducted using two types of inputs: a combination of discrete heartbeats extracted from 12-lead ECG and an entire 12-lead ECG signal of 10 s. This study utilized 326,904 ECG signals from 134,447 patients and categorized them into three groups: true-normal sinus rhythm (T-NSR), atrial fibrillation-normal sinus rhythm (AF-NSR), and clinically important arrhythmia-normal sinus rhythm (CIA-NSR). The T-NSR group comprised patients with at least three normal rhythms in a year and no atrial fibrillation or arrhythmias history. Clinically important arrhythmia included atrial fibrillation, atrial flutter, atrial premature contraction, atrial tachycardia, ventricular premature contraction, ventricular tachycardia, right and left bundle branch block, and atrioventricular block over the second degree. The AF-NSR group included normal sinus rhythm paired with atrial fibrillation or atrial flutter within 14 days, and the CIA-NSR group comprised normal sinus rhythm paired with CIA occurring within 14 days. Three deep learning models, ResNet-18, LSTM, and Transformer-based models, were utilized to distinguish T-NSR from AF-NSR and T-NSR from CIA-NSR. The experiments demonstrated the potential of using discrete heartbeats in predicting future arrhythmia and atrial fibrillation incidences extracted from 12-lead electrocardiogram (ECG) signals alone, without any additional patient information. The analysis reveals that these discrete heartbeats contain subtle patterns that deep learning models can identify. Focusing on discrete heartbeats may lead to more timely and accurate diagnoses of these conditions, improving patient outcomes and enabling automated diagnosis using ECG signals as a biomarker.

20.
Biosens Bioelectron ; 241: 115642, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37703643

ABSTRACT

Sensors for detecting infinitesimal amounts of chemicals in air have been widely developed because they can identify the origin of chemicals. These sensing technologies are also used to determine the variety and freshness of fresh food and detect explosives, hazardous chemicals, environmental hormones, and diseases using exhaled gases. However, there is still a need to rapidly develop portable and highly sensitive sensors that respond to complex environments. Here, we show an efficient method for optimising an M13 bacteriophage-based multi-array colourimetric sensor for multiple simultaneous classifications. Apples, which are difficult to classify due to many varieties in distribution, were selected for classifying targets. M13 was adopted to fabricate a multi-array colourimetric sensor using the self-templating process since a chemical property of major coat protein p8 consisting of the M13 body can be manipulated by genetic engineering to respond to various target substances. The twenty sensor units, which consisted of different types of manipulated M13, exhibited colour changes because of the change of photonic crystal-like nanostructure when they were exposed to target substances associated with apples. The classification success rate of the optimal sensor combinations was achieved with high accuracy for the apple variety (100%), four standard fragrances (100%), and aging (84.5%) simultaneously. We expect that this optimisation technique can be used for rapid sensor development capable of multiple simultaneous classifications in various fields, such as medical diagnosis, hazardous environment monitoring, and the food industry, where sensors need to be developed in response to complex environments consisting of various targets.


Subject(s)
Biosensing Techniques , Nanostructures , Biosensing Techniques/methods , Bacteriophage M13/genetics , Bacteriophage M13/chemistry , Genetic Engineering/methods , Colorimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...