Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979717

ABSTRACT

In the big data era, the requirement for data clustering methods that can handle massive and heterogeneous datasets with varying distributions increases. This study proposes a clustering algorithm for data sets with heterogeneous density using a dual-mode memristor crossbar array for data clustering. The array consists of a Ta/HfO2/RuO2 memristor operating in analog or digital modes, controlled by the reset voltage. The digital mode shows low dispersion and a high resistance ratio, and the analog mode enables precise conductance tuning. The local outlier factor is introduced to handle a heterogeneous density, and the required Euclidean and K-distances within the given dataset are calculated in the analog mode in parallel. In the digital mode, clustering is performed based on the connectivity among data points after excluding the detected outliers. The proposed algorithm boasts linear time complexity for the entire process. Extensive evaluations of synthetic datasets demonstrate significant improvement over representative density-based algorithms, and the datasets with heterogeneous density are clustered feasibly. Finally, the proposed algorithm is used to cluster the single-molecule localization microscopy data, demonstrating the feasibility of the suggested method for real-world problems.

2.
ACS Appl Mater Interfaces ; 16(13): 16462-16473, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513155

ABSTRACT

Higher functionality should be achieved within the device-level switching characteristics to secure the operational possibility of mixed-signal data processing within a memristive crossbar array. This work investigated electroforming-free Ta/HfO2/RuO2 resistive switching devices for digital- and analog-type applications through various structural and electrical analyses. The multiphase reset behavior, induced by the conducting filament modulation and oxygen vacancy generation (annihilation) in the HfO2 layer by interacting with the Ta (RuO2) electrode, was utilized for the switching mode change. Therefore, a single device can manifest stable binary switching between low and high resistance states for the digital mode and the precise 8-bit conductance modulation (256 resistance values) via an optimized pulse application for the analog mode. An in-depth analysis of the operation in different modes and comparing memristors with different electrode structures validate the proposed mechanism. The Ta/HfO2/RuO2 resistive switching device is feasible for a mixed-signal processable memristive array.

3.
Small ; 20(25): e2306585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212281

ABSTRACT

Compact but precise feature-extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high-dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2-memristor and 1-capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single-layer network. Analog input mapping ability is tested with a Mackey-Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey-Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...