Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(6): 101585, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38781960

ABSTRACT

RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML.


Subject(s)
Apoptosis , Leukemia, Myelomonocytic, Chronic , Mutation , Myeloid Cell Leukemia Sequence 1 Protein , Leukemia, Myelomonocytic, Chronic/drug therapy , Leukemia, Myelomonocytic, Chronic/pathology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Humans , Apoptosis/drug effects , Animals , Mutation/genetics , Mice , Signal Transduction/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Disease Progression , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , NF-kappa B/metabolism , DNA Methylation/drug effects , DNA Methylation/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Blast Crisis/pathology , Blast Crisis/drug therapy , Blast Crisis/genetics , Blast Crisis/metabolism
2.
bioRxiv ; 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37066354

ABSTRACT

RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Using single-cell, multi-omics technologies, we sought to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We found that RAS pathway mutations induced the transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs), which underwent proliferation and monocytic differentiation in response to cell-intrinsic and -extrinsic inflammatory signaling that also impaired immune cells' functions. HSPCs expanded at disease progression and relied on the NF- K B pathway effector MCL1 to maintain their survival, which explains why patients with RAS pathway- mutated CMML do not benefit from BCL2 inhibitors such as venetoclax. Our study has implications for developing therapies to improve the survival of patients with RAS pathway- mutated CMML.

3.
Blood Cancer Discov ; 4(4): 276-293, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37102976

ABSTRACT

The safety and efficacy of combining the isocitrate dehydrogenase-1 (IDH1) inhibitor ivosidenib (IVO) with the BCL2 inhibitor venetoclax (VEN; IVO + VEN) ± azacitidine (AZA; IVO + VEN + AZA) were evaluated in four cohorts of patients with IDH1-mutated myeloid malignancies (n = 31). Most (91%) adverse events were grade 1 or 2. The maximal tolerated dose was not reached. Composite complete remission with IVO + VEN + AZA versus IVO + VEN was 90% versus 83%. Among measurable residual disease (MRD)-evaluable patients (N = 16), 63% attained MRD--negative remissions; IDH1 mutation clearance occurred in 64% of patients receiving ≥5 treatment cycles (N = 14). Median event-free survival and overall survival were 36 [94% CI, 23-not reached (NR)] and 42 (95% CI, 42-NR) months. Patients with signaling gene mutations appeared to particularly benefit from the triplet regimen. Longitudinal single-cell proteogenomic analyses linked cooccurring mutations, antiapoptotic protein expression, and cell maturation to therapeutic sensitivity of IDH1-mutated clones. No IDH isoform switching or second-site IDH1 mutations were observed, indicating combination therapy may overcome established resistance pathways to single-agent IVO. SIGNIFICANCE: IVO + VEN + AZA is safe and active in patients with IDH1-mutated myeloid malignancies. Combination therapy appears to overcome resistance mechanisms observed with single-agent IDH-inhibitor use, with high MRD-negative remission rates. Single-cell DNA ± protein and time-of-flight mass-cytometry analysis revealed complex resistance mechanisms at relapse, highlighting key pathways for future therapeutic intervention. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Antineoplastic Agents , Neoplasm Recurrence, Local , Humans , Neoplasm Recurrence, Local/chemically induced , Antineoplastic Agents/adverse effects , Azacitidine/adverse effects , Isocitrate Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...