Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiology ; 310(1): e230614, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289213

ABSTRACT

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59-0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57-0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55-0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.


Subject(s)
Deep Learning , Hip Fractures , Adult , Humans , Female , Aged , Retrospective Studies , Hip Fractures/diagnostic imaging , Area Under Curve , Tomography, X-Ray Computed
2.
AJR Am J Roentgenol ; 221(5): 586-598, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37315015

ABSTRACT

BACKGROUND. Chest radiography is an essential tool for diagnosing community-acquired pneumonia (CAP), but it has an uncertain prognostic role in the care of patients with CAP. OBJECTIVE. The purpose of this study was to develop a deep learning (DL) model to predict 30-day mortality from diagnosis among patients with CAP by use of chest radiographs to validate the performance model in patients from different time periods and institutions. METHODS. In this retrospective study, a DL model was developed from data on 7105 patients from one institution from March 2013 to December 2019 (3:1:1 allocation to training, validation, and internal test sets) to predict the risk of all-cause mortality within 30 days after CAP diagnosis by use of patients' initial chest radiographs. The DL model was evaluated in a cohort of patients diagnosed with CAP during emergency department visits at the same institution from January 2020 to March 2020 (temporal test cohort [n = 947]) and in two additional cohorts from different institutions (external test cohort A [n = 467], January 2020 to December 2020; external test cohort B [n = 381], March 2019 to October 2021). AUCs were compared between the DL model and an established risk prediction tool based on the presence of confusion, blood urea nitrogen level, respiratory rate, blood pressure, and age 65 years or older (CURB-65 score). The combination of CURB-65 score and DL model was evaluated with a logistic regression model. RESULTS. The AUC for predicting 30-day mortality was significantly larger (p < .001) for the DL model than for CURB-65 score in the temporal test set (0.77 vs 0.67). The larger AUC for the DL model than for CURB-65 score was not significant (p > .05) in external test cohort A (0.80 vs 0.73) or external test cohort B (0.80 vs 0.72). In the three cohorts, the DL model, in comparison with CURB-65 score, had higher (p < .001) specificity (range, 61-69% vs 44-58%) at the sensitivity of CURB-65 score. The combination of DL model and CURB-65 score, in comparison with CURB-65 score, yielded a significant increase in AUC in the temporal test cohort (0.77, p < .001) and external test cohort B (0.80, p = .04) and a nonsignificant increase in AUC in external test cohort A (0.80, p = .16). CONCLUSION. A DL-based model consisting of initial chest radiographs was predictive of 30-day mortality among patients with CAP with improved performance over CURB-65 score. CLINICAL IMPACT. The DL-based model may guide clinical decision-making in the care of patients with CAP.

3.
Osteoporos Int ; 34(8): 1437-1451, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37195320

ABSTRACT

The need for an accurate country-specific real-world-based fracture prediction model is increasing. Thus, we developed scoring systems for osteoporotic fractures from hospital-based cohorts and validated them in an independent cohort in Korea. The model includes history of fracture, age, lumbar spine and total hip T-score, and cardiovascular disease. PURPOSE: Osteoporotic fractures are substantial health and economic burden. Therefore, the need for an accurate real-world-based fracture prediction model is increasing. We aimed to develop and validate an accurate and user-friendly model to predict major osteoporotic and hip fractures using a common data model database. METHODS: The study included 20,107 and 13,353 participants aged ≥ 50 years with data on bone mineral density using dual-energy X-ray absorptiometry from the CDM database between 2008 and 2011 from the discovery and validation cohort, respectively. The main outcomes were major osteoporotic and hip fracture events. DeepHit and Cox proportional hazard models were used to identify predictors of fractures and to build scoring systems, respectively. RESULTS: The mean age was 64.5 years, and 84.3% were women. During a mean of 7.6 years of follow-up, 1990 major osteoporotic and 309 hip fracture events were observed. In the final scoring model, history of fracture, age, lumbar spine T-score, total hip T-score, and cardiovascular disease were selected as predictors for major osteoporotic fractures. For hip fractures, history of fracture, age, total hip T-score, cerebrovascular disease, and diabetes mellitus were selected. Harrell's C-index for osteoporotic and hip fractures were 0.789 and 0.860 in the discovery cohort and 0.762 and 0.773 in the validation cohort, respectively. The estimated 10-year risks of major osteoporotic and hip fractures were 2.0%, 0.2% at score 0 and 68.8%, 18.8% at their maximum scores, respectively. CONCLUSION: We developed scoring systems for osteoporotic fractures from hospital-based cohorts and validated them in an independent cohort. These simple scoring models may help predict fracture risks in real-world practice.


Subject(s)
Cardiovascular Diseases , Hip Fractures , Osteoporotic Fractures , Humans , Female , Middle Aged , Male , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Bone Density , Hip Fractures/epidemiology , Hip Fractures/etiology , Absorptiometry, Photon , Algorithms , Risk Factors , Risk Assessment
4.
J Thorac Dis ; 13(12): 6943-6962, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35070379

ABSTRACT

OBJECTIVE: This review will focus on how AI-and, specifically, deep learning-can be applied to complement aspects of the current healthcare system. We describe how AI-based tools can augment existing clinical workflows by discussing the applications of AI to worklist prioritization and patient triage, the performance-boosting effects of AI as a second reader, and the use of AI to facilitate complex quantifications. We also introduce prominent examples of recent AI applications, such as tuberculosis screening in resource-constrained environments, the detection of lung cancer with screening CT, and the diagnosis of COVID-19. We also provide examples of prognostic predictions and new discoveries beyond existing clinical practices. BACKGROUND: Artificial intelligence (AI) has shown promising performance for thoracic diseases, particularly in the field of thoracic radiology. However, it has not yet been established how AI-based image analysis systems can help physicians in clinical practice. METHODS: This review included peer-reviewed research articles on AI in the thorax published in English between 2015 and 2021. CONCLUSIONS: With advances in technology and appropriate preparation of physicians, AI could address various clinical problems that have not been solved due to a lack of clinical resources or technological limitations. KEYWORDS: Artificial intelligence (AI); deep learning (DL); computer aided diagnosis (CAD); thoracic radiology; pulmonary medicine.

5.
Autophagy ; 14(1): 152-168, 2018.
Article in English | MEDLINE | ID: mdl-28841353

ABSTRACT

The orphan nuclear receptor ESRRA (estrogen-related receptor α) is a key regulator of energy homeostasis and mitochondrial function. Macroautophagy/autophagy, an intracellular degradation process, is a critical innate effector against intracellular microbes. Here, we demonstrate that ESRRA is required for the activation of autophagy to promote innate antimicrobial defense against mycobacterial infection. AMP-activated protein kinase pathway and SIRT1 (sirtuin 1) activation led to induction of ESRRA, which is essential for autophagosome formation, in bone marrow-derived macrophages. ESRRA enhanced the transcriptional activation of numerous autophagy-related (Atg) genes containing ERR response elements in their promoter regions. Furthermore, ESRRA, operating in a feed-forward loop with SIRT1, was required for autophagy activation through deacetylation of ATG5, BECN1, and ATG7. Importantly, ESRRA deficiency resulted in a decrease of phagosomal maturation and antimicrobial responses against mycobacterial infection. Thus, we identify ESRRA as a critical activator of autophagy via both transcriptional and post-translational control to promote antimicrobial host responses.


Subject(s)
Autophagy/immunology , Immunity, Innate , Receptors, Estrogen/metabolism , Sirtuin 1/metabolism , Tuberculosis/immunology , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/metabolism , Beclin-1/metabolism , Humans , Immunity, Innate/genetics , Macrophages , Mice , Mice, Knockout , Receptors, Estrogen/genetics , Signal Transduction/genetics , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...