Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Carbohydr Polym ; 345: 122546, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227091

ABSTRACT

Herein, dexamethasone (DEX) nanocrystalline suspension (NS)-embedded hydrogel (NS-G) was constructed using a hydroxypropyl methylcellulose (HPMC) polymer to enhance cochlear delivery and attenuate hearing loss following intratympanic (IT) injection. Hydrophobic steroidal nanocrystals were prepared using a bead milling technique and incorporated into a polysaccharide hydrogel. The NS-G system with HPMC (average molecular weight, 86,000 g/mol; 15 mg/mL) was characterized as follows: rod-shaped drug crystalline; particle size <300 nm; and constant complex viscosity ≤1.17 Pa·s. Pulverization of the drug particles into submicron diameters enhanced drug dissolution, while the HPMC matrix increased the residence time in the middle ear cavity, exhibiting a controlled release profile. The IT NS-G system elicited markedly enhanced and prolonged drug delivery (> 9 h) to the cochlear tissue compared with that of DEX sodium phosphate (DEX-SP), a water-soluble prodrug. In mice with kanamycin- and furosemide-induced ototoxicity, NS-G markedly enhanced hearing preservation across all frequencies (8-32 kHz), as revealed by an auditory brainstem response test, compared with both saline and DEX-SP. Moreover, treatment with NS-G showed enhanced anti-inflammatory effects, as evidenced by decreased levels of inflammation-related cytokines. Therefore, the IT administration of DEX NS-loaded HPMC hydrogels is a promising strategy for treating hearing loss.


Subject(s)
Cochlea , Dexamethasone , Hearing Loss , Hydrogels , Hypromellose Derivatives , Injection, Intratympanic , Nanoparticles , Dexamethasone/chemistry , Dexamethasone/administration & dosage , Animals , Hypromellose Derivatives/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Mice , Cochlea/drug effects , Cochlea/pathology , Hearing Loss/drug therapy , Hearing Loss/chemically induced , Drug Liberation , Male , Drug Delivery Systems/methods
2.
Clin Immunol ; 258: 109852, 2024 01.
Article in English | MEDLINE | ID: mdl-38029848

ABSTRACT

Atopic dermatitis (AD) treatment has largely relied on non-specific broad immunosuppressants despite their long-term toxicities until the approval of dupilumab, which blocks IL-4 signaling to target Th2 cell responses. Here, we report the discovery of compound 4aa, a novel compound derived from the structure of chlorophyll a, and the efficacy of chlorophyll a to alleviate AD symptoms by oral administration in human AD patients. 4aa downregulated GATA3 and IL-4 in differentiating Th2 cells by potently blocking IL-4 receptor dimerization. In the murine model, oral administration of 4aa reduced the clinical severity of symptoms and scratching behavior by 76% and 72%, respectively. Notably, the elevated serum levels of Th2 cytokines reduced to levels similar to those in the normal group after oral administration of 4aa. Additionally, the toxicological studies showed favorable safety profiles and good tolerance. In conclusion, 4aa may be applied for novel therapeutic developments for patients with AD.


Subject(s)
Dermatitis, Atopic , Humans , Mice , Animals , Dermatitis, Atopic/drug therapy , Th2 Cells , Chlorophyll A , Interleukin-4 , Cytokines , Cell Differentiation
3.
Cell Biosci ; 13(1): 146, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553596

ABSTRACT

PURPOSE: The oncoprotein KAI1 C-terminal interacting tetraspanin (KITENIN; vang-like 1) promotes cell metastasis, invasion, and angiogenesis, resulting in shorter survival times in cancer patients. Here, we aimed to determine the effects of KITENIN on the energy metabolism of human colorectal cancer cells. EXPERIMENTAL DESIGN: The effects of KITENIN on energy metabolism were evaluated using in vitro assays. The GEPIA web tool was used to extrapolate the clinical relevance of KITENIN in cancer cell metabolism. The bioavailability and effect of the disintegrator of KITENIN complex compounds were evaluated by LC-MS, in vivo animal assay. RESULTS: KITENIN markedly upregulated the glycolytic proton efflux rate and aerobic glycolysis by increasing the expression of GLUT1, HK2, PKM2, and LDHA. ß-catenin, CD44, CyclinD1 and HIF-1A, including c-Myc, were upregulated by KITENIN expression. In addition, KITENIN promoted nuclear PKM2 and PKM2-induced transactivation, which in turn, increased the expression of downstream mediators. This was found to be mediated through an effect of c-Myc on the transcription of hnRNP isoforms and a switch to the M2 isoform of pyruvate kinase, which increased aerobic glycolysis. The disintegration of KITENIN complex by silencing the KITENIN or MYO1D downregulated aerobic glycolysis. The disintegrator of KITENIN complex compound DKC1125 and its optimized form, DKC-C14S, exhibited the inhibition activity of KITENIN-mediated aerobic glycolysis in vitro and in vivo. CONCLUSIONS: The oncoprotein KITENIN induces PKM2-mediated aerobic glycolysis by upregulating the c-Myc/hnRNPs axis.

4.
Biomed Pharmacother ; 165: 115066, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392657

ABSTRACT

Acute myeloid leukemia (AML) is a prevalent form of leukemia in adults. As its survival rate is low, there is an urgent need for new therapeutic options. In AML, FMS-like tyrosine kinase 3 (FLT3) mutations are common and have negative outcomes. However, current FLT3-targeting agents, Midostaurin and Gilteritinib, face two significant issues, specifically the emergence of acquired resistance and drug-related adverse events leading to treatment failure. Rearranged during transfection (RET), meanwhile, is a proto-oncogene linked to various types of cancer, but its role in AML has been limited. A previous study showed that activation of RET kinase enhances FLT3 protein stability, leading to the promotion of AML cell proliferation. However, no drugs are currently available that target both FLT3 and RET. This study introduces PLM-101, a new therapeutic option derived from the traditional Chinese medicine indigo naturalis with potent in vitro and in vivo anti-leukemic activities. PLM-101 potently inhibits FLT3 kinase and induces its autophagic degradation via RET inhibition, providing a superior mechanism to that of FLT3 single-targeting agents. Single- and repeated-dose toxicity tests conducted in the present study showed no significant drug-related adverse effects. This study is the first to present a new FLT3/RET dual-targeting inhibitor, PLM-101, that shows potent anti-leukemic activity and fewer adverse effects. PLM-101, therefore, should be considered for use as a potential therapeutic agent for AML.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Adult , Humans , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/metabolism , Protein Kinase Inhibitors/adverse effects , Mutation , Proto-Oncogene Proteins c-ret/genetics
5.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36693679

ABSTRACT

BACKGROUND: Immunological contexture differs across malignancies, and understanding it in the tumor microenvironment (TME) is essential for development of new anticancer agents in order to achieve synergistic effects with anti-programmed cell death protein-1 (PD-1) therapy. TYRO3, AXL, and MERTK receptors are bi-expressed in both cancer and immune cells, and thus emerge as promising targets for therapeutic intervention. Whereas AXL and MERTK have been extensively studied, the role of TYRO3, in the TME, is still undetermined. METHODS: Here, we screened the TYRO3-focused chemical library consisting of 208 compounds and presented a potent and highly selective TYRO3 inhibitor, KRCT87. We explored the role of TYRO3 using mouse engrafting MC38 or 4T1 tumors. We validated the results using flow cytometry, RNA sequencing analysis, gene knockdown or overexpression, ex vivo immune cells isolation from mouse models, immunoblotting and quantitative PCR. Flow cytometry was used for the quantification of cell populations and immunophenotyping of macrophages and T cells. Co-cultures of macrophages and T cells were performed to verify the role of CCN1 in the tumors. RESULTS: TYRO3 blockade boosts antitumor immune responses in both the tumor-draining lymph nodes and tumors in MC38-syngeneic mice models. Moreover, the combination of KRCT87 and anti-PD-1 therapy exerts significant synergistic antitumor effects in anti-PD-1-non-responsive 4T1-syngeneic model. Mechanistically, we demonstrated that inhibition of TYRO3-driven CCN1 secretion fosters macrophages into M1-skewing phenotypes, thereby triggering antitumor T-cell responses. CCN1 overexpression in MC38 tumors diminishes responsiveness to anti-PD-1 therapy. CONCLUSIONS: The activated TYRO3-CCN1 axis in cancer could dampen anti-PD-1 therapy responses. These findings highlight the potential of TYRO3 blockade to improve the clinical outcomes of anti-PD-1 therapy.


Subject(s)
Tumor Microenvironment , Mice , Animals , c-Mer Tyrosine Kinase , Cell Line, Tumor , Disease Models, Animal
7.
Molecules ; 25(9)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349415

ABSTRACT

This study aimed to develop and validate a sensitive liquid chromatography-coupled tandem mass spectrometry method for the quantification of LDD-2614, an indirubin derivative and novel FLT3 inhibitor, in rat plasma. In addition, the developed analytical method was applied to observe the pharmacokinetic properties of LDD-2614. Chromatographic separation was achieved on a Luna omega C18 column using a mixture of water and acetonitrile, both containing 0.1% formic acid. Quantitation was performed using positive electrospray ionization in a multiple reaction monitoring (MRM) mode. The MRM transitions were optimized as m/z 426.2→113.1 for LDD-2614 and m/z 390.2→113.1 for LDD-2633 (internal standard), and the lower limit of quantification (LLOQ) for LDD-2614 was determined as 0.1 ng/mL. Including the LLOQ, the nine-point calibration curve was linear with a correlation coefficient greater than 0.9991. Inter- and intraday accuracies (RE) ranged from -3.19% to 8.72%, and the precision was within 9.02%. All validation results (accuracy, precision, matrix effect, recovery, stability, and dilution integrity) met the acceptance criteria of the U.S. Food and Drug Administration and the Korea Ministry of Food and Drug Safety guidelines. The proposed method was validated and demonstrated to be suitable for the quantification of LDD-2614 for pharmacokinetics studies.


Subject(s)
Chromatography, High Pressure Liquid/methods , Indoles/pharmacokinetics , Oximes/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Tandem Mass Spectrometry/methods , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Administration, Intravenous , Administration, Oral , Animals , Calibration , Chromatography, High Pressure Liquid/instrumentation , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacology , Male , Oximes/administration & dosage , Oximes/chemistry , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/instrumentation
8.
Eur J Med Chem ; 195: 112205, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32272419

ABSTRACT

FMS-like receptor tyrosine kinase-3 (FLT3) is expressed on acute leukemia cells and is implicated in the survival, proliferation and differentiation of hematopoietic cells in most acute myeloid leukemia (AML) patients. Despite recent achievements in the development of FLT3-targeted small-molecule drugs, there are still unmet medical needs related to kinase selectivity and the progression of some mutant forms of FLT3. Herein, we describe the discovery of novel orally available type 1 FLT3 inhibitors from structure-activity relationship (SAR) studies for the optimization of indirubin derivatives with biological and pharmacokinetic profiles as potential therapeutic agents for AML. The SAR exploration provided important structural insights into the key substituents for potent inhibitory activities of FLT3 and in MV4-11 cells. The profile of the most optimized inhibitor (36) showed IC50 values of 0.87 and 0.32 nM against FLT3 and FLT3/D835Y, respectively, along with potent inhibition against MV4-11 and FLT3/D835Y expressed MOLM14 cells with a GI50 value of 1.0 and 1.87 nM, respectively. With the high oral bioavailability of 42.6%, compound 36 displayed significant in vivo antitumor activity by oral administration of 20 mg/kg once daily dosing schedule for 21 days in a mouse xenograft model. The molecular docking study of 36 in the homology model of the DFG-in conformation of FLT3 resulted in a reasonable binding mode in type 1 kinases similar to the reported type 1 FLT3 inhibitors Crenolanib and Gilteritinib.


Subject(s)
Drug Design , Indoles/chemistry , Indoles/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Oximes/chemistry , Oximes/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Indoles/administration & dosage , Indoles/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Docking Simulation , Oximes/administration & dosage , Oximes/metabolism , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/chemistry , fms-Like Tyrosine Kinase 3/metabolism
9.
Int J Mol Sci ; 20(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698770

ABSTRACT

Benzo[a]pyrene (BaP) is a well-known carcinogen formed during the cooking process. Although BaP exposure has been implicated as one of the risk factors for lung cancer in animals and humans, there are only limited data on BaP-induced gastrointestinal cancer. Therefore, this study investigated the protective effects of curcumin on BaP-induced DNA damage in rat stomach tissues. BaP (20 mg/kg/day) and curcumin (50, 100, or 200 mg/kg) were administered daily to Sprague-Dawley rats by oral gavage over 30 days. Curcumin was pre-administered before BaP exposure. All rats were euthanized, and liver, kidney, and stomach tissues were removed at 24 h after the last treatment. We observed that aspartate aminotransferase (AST), alanine aminotransferase (ALT), and glucose levels were significantly reduced in rats treated with high dose co-administration of curcumin (200 mg/kg) compared to BaP alone. The expression levels of cytochrome P450 (CYP) 1A1 and CYP1B1 were significantly increased in the liver of rats treated with BaP. However, co-administration of curcumin (200 mg/kg) with BaP markedly reduced CYP1A1 expression in a dose-dependent manner. Furthermore, plasma levels of BaP-diolepoxide (BPDE) and BaP metabolites were significantly reduced by co-administration of curcumin (200 mg/kg). Additionally, co-administration of curcumin (200 mg/kg) with BaP significantly reduced the formation of BPDE-I-DNA and 8-hydroxydeoxy guanosine (8-OHdG) adducts in the liver, kidney, and stomach tissues. The inhibition of these adduct formations were more prominent in the stomach tissues than in the liver. Overall, our observations suggest that curcumin might inhibit BaP-induced gastrointestinal tumorigenesis and shows promise as a chemopreventive agent.


Subject(s)
Curcumin/pharmacology , DNA Damage , Stomach/pathology , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Animals , Benzo(a)pyrene , Body Weight/drug effects , Cytochrome P-450 Enzyme System/metabolism , DNA Adducts/metabolism , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/enzymology , Liver/pathology , Metabolome , Organ Size/drug effects , Rats, Sprague-Dawley , Stomach/drug effects
10.
J Exp Clin Cancer Res ; 37(1): 295, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30497501

ABSTRACT

BACKGROUND: Ligand-dependent activation of the G-protein coupled receptor 119 (GPR119) lowers blood glucose via glucose-dependent insulin secretion and intestinal glucagon-like peptide-1 production. However, the function of GPR119 in cancer cells has not been studied. METHODS: GPR119 expression was assessed by real-time qPCR and immunohistochemistry in human breast cancer cell lines and breast cancer tissues. Cell proliferation and cell cycle analyses were performed by Incucyte® live cell analysis system and flow cutometry, respectively. Autophagy activity was estimeated by western blottings and LC3-GFP transfection. RESULTS: mRNA or protein expression of GPR119 was detected in 9 cancer cell lines and 19 tissue samples. Cotreatment with GPR119 agonist (MBX-2982 or GSK1292263) significantly potentiated gefitinib-induced cell growth inhibition in gefitinib-insensitive MCF-7 and MDA-MB-231 breast cancer cells. We observed that caspase-3/7 activity was enhanced with the downregulation of Bcl-2 in MCF-7 cells exposed to MBX-2982. Gefitinib-induced autophagy is related with cancer cell survival and chemoresistance. GPR119 agonists inhibit gefitinib-induced autophagosome formation in MCF-7 and MDA-MB-231 cells. MBX-2982 also caused a metabolic shift to enhanced glycolysis accompanied by reduced mitochondrial oxidative phosphorylation. MBX-2982 increased intracellular (~ 2.5 mM) and extracellular lactate (~ 20 mM) content. Gefitinib-mediated autophagy was suppressed by 20 mM lactate in MCF-7 cells. CONCLUSIONS: GPR119 agonists reduced mitochondrial OXPHOS and stimulated glycolysis in breast cancer cells, with consequent overproduction of lactate that inhibited autophagosome formation. Because autophagy is crucial for the survival of cancer cells exposed to TKIs, GPR119 agonists potentiated the anticancer effects of TKIs.


Subject(s)
Breast Neoplasms/drug therapy , Gefitinib/pharmacology , Lactic Acid/metabolism , Mesylates/pharmacology , Oxadiazoles/pharmacology , Receptors, G-Protein-Coupled/agonists , Tetrazoles/pharmacology , Thiazoles/pharmacology , Animals , Autophagy/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Synergism , Female , Humans , MCF-7 Cells , Mice, Inbred BALB C , Mice, Nude , Receptors, G-Protein-Coupled/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL