Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Small ; : e2403147, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989706

ABSTRACT

All-solid-state batteries (ASSBs) possess the advantage of ensuring safety while simultaneously maximizing energy density, making them suitable for next-generation battery models. In particular, sulfide solid electrolytes (SSEs) are viewed as promising candidates for ASSB electrolytes due to their excellent ionic conductivity. However, a limitation exists in the form of interfacial side reactions occurring between the SSEs and cathode active materials (CAMs), as well as the generation of sulfide-based gases within the SSE. These issues lead to a reduction in the capacity of CAMs and an increase in internal resistance within the cell. To address these challenges, cathode composite materials incorporating zinc oxide (ZnO) are fabricated, effectively reducing various side reactions occurring in CAMs. Acting as a semiconductor, ZnO helps mitigate the rapid oxidation of the solid electrolyte facilitated by an electronic pathway, thereby minimizing side reactions, while maintaining electron pathways to the active material. Additionally, it absorbs sulfide-based gases, thus protecting the lithium ions within CAMs. In this study, the mass spectrometer is employed to observe gas generation phenomena within the ASSB cell. Furthermore, a clear elucidation of the side reactions occurring at the cathode and the causes of capacity reduction in ASSB are provided through density functional theory calculations.

2.
Article in English | MEDLINE | ID: mdl-38760935

ABSTRACT

Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics.

3.
Nat Aging ; 4(3): 364-378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491288

ABSTRACT

Age is the primary risk factor for Parkinson's disease (PD), but how aging changes the expression and regulatory landscape of the brain remains unclear. Here we present a single-nuclei multiomic study profiling shared gene expression and chromatin accessibility of young, aged and PD postmortem midbrain samples. Combined multiomic analysis along a pseudopathogenesis trajectory reveals that all glial cell types are affected by age, but microglia and oligodendrocytes are further altered in PD. We present evidence for a disease-associated oligodendrocyte subtype and identify genes lost over the aging and disease process, including CARNS1, that may predispose healthy cells to develop a disease-associated phenotype. Surprisingly, we found that chromatin accessibility changed little over aging or PD within the same cell types. Peak-gene association patterns, however, are substantially altered during aging and PD, identifying cell-type-specific chromosomal loci that contain PD-associated single-nucleotide polymorphisms. Our study suggests a previously undescribed role for oligodendrocytes in aging and PD.


Subject(s)
Parkinson Disease , Humans , Aged , Parkinson Disease/genetics , Multiomics , Mesencephalon/metabolism , Microglia/metabolism , Solitary Nucleus/metabolism , Chromatin
4.
Methods Mol Biol ; 2761: 81-91, 2024.
Article in English | MEDLINE | ID: mdl-38427231

ABSTRACT

The epigenome, consisting of chemical modifications to DNA and histone proteins, can alter gene expression. Clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) systems enable precise target gene-specific gene modulation by attaching different "effector" domains to the dCas9 protein to activate or repress specific genes. CRISPR/dCas9-SunTag is an improved system version, allowing more efficient and precise gene activation or repression by recruiting multiple copies of the protein of interest. A CRISPR/dCas9-SunTag-based modular epigenetic toolkit was developed, enabling gene-specific epigenetic architecture modulation. This protocol generated a stable SH-SY5Y cell line expressing the CRISPR/dCas9-SunTag-JARID1A system to study H3K4Me3-mediated promoter regulation at a 200-400 bp of fine resolution. The procedure involved designing sgRNAs, subcloning dCas9-5XGCN4 into pLvx-DsRed, validating epigenetic mark changes with ChIP, and validating gene expression changes with RT-qPCR. This epigenetic toolkit is valuable for researchers to understand the relationship between gene-specific epigenetic modifications and gene expression.


Subject(s)
CRISPR-Cas Systems , Neuroblastoma , Humans , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , RNA, Guide, CRISPR-Cas Systems , Neuroblastoma/genetics , Epigenesis, Genetic
5.
Nutrients ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836456

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory disease characterized by dry and itchy skin. Recently, it has been reported that oxidative stress is involved in skin diseases, possibly including AD. Vitamin C, also referred to as ascorbic acid, is a vital water-soluble compound that functions as an essential nutrient. It plays a significant role as both an antioxidant and an additive in various pharmaceutical and food products. Despite the fact that vitamin C is easily oxidized, we have developed NXP081, a single-stranded DNA aptamer that selectively binds to vitamin C, thereby inhibiting its oxidation. The objective of the current research was to examine the impact of NXP081, an animal model of AD induced by 2,4-dinitrofluorobenzene (DNFB). The experimental drug NXP081, when taken orally, showed promising results in reducing inflammation and improving the skin conditions caused by DNFB. The administration of NXP081 resulted in a significant reduction in ear swelling and a noticeable improvement in the appearance of skin lesions. In addition, the administration of NXP081 resulted in a significant decrease in the migration of mast cells in the skin lesions induced by DNFB. Moreover, NXP081 inhibited the production of interferon-gamma (IFN-γ) in CD4+ T cells that were activated and derived from the lymph nodes. Our findings provide useful information about the anti-inflammatory effect of NXP081 on AD.


Subject(s)
Aptamers, Nucleotide , Dermatitis, Atopic , Skin Diseases , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrofluorobenzene/adverse effects , Mice, Inbred BALB C , Aptamers, Nucleotide/adverse effects , Ascorbic Acid/metabolism , CD4-Positive T-Lymphocytes/metabolism , Skin Diseases/metabolism , Vitamins/pharmacology , Skin/metabolism , Cytokines/metabolism
6.
Acta Neuropathol ; 146(5): 685-705, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37740734

ABSTRACT

Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.


Subject(s)
Parkinson Disease , Humans , Animals , Mice , Parkinson Disease/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , 8-Hydroxy-2'-Deoxyguanosine , Mice, Inbred C57BL , Mutagenesis , DNA
7.
Nat Commun ; 14(1): 4283, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463889

ABSTRACT

The nuclear receptor, Nurr1, is critical for both the development and maintenance of midbrain dopamine neurons, representing a promising molecular target for Parkinson's disease (PD). We previously identified three Nurr1 agonists (amodiaquine, chloroquine and glafenine) that share an identical chemical scaffold, 4-amino-7-chloroquinoline (4A7C), suggesting a structure-activity relationship. Herein we report a systematic medicinal chemistry search in which over 570 4A7C-derivatives were generated and characterized. Multiple compounds enhance Nurr1's transcriptional activity, leading to identification of an optimized, brain-penetrant agonist, 4A7C-301, that exhibits robust neuroprotective effects in vitro. In addition, 4A7C-301 protects midbrain dopamine neurons in the MPTP-induced male mouse model of PD and improves both motor and non-motor olfactory deficits without dyskinesia-like behaviors. Furthermore, 4A7C-301 significantly ameliorates neuropathological abnormalities and improves motor and olfactory dysfunctions in AAV2-mediated α-synuclein-overexpressing male mouse models. These disease-modifying properties of 4A7C-301 may warrant clinical evaluation of this or analogous compounds for the treatment of patients with PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Mice , Animals , Male , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Brain/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
8.
Int Neurourol J ; 26(Suppl 2): S85-93, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36503211

ABSTRACT

PURPOSE: Deregulation of SNCA encoding α-synuclein (α-SYN) has been associated with both the familial and sporadic forms of Parkinson disease (PD). Epigenetic regulation plays a crucial role in PD. The intron1 of SNCA harbors a large unmethylated CpG island. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1), a CpG island binding protein, can repress gene expression by occupying hypomethylated CpG-rich promoters, and therefore SNCA could be a target for TET1. We investigated whether TET1 binds to SNCA-intron1 and regulates gene expression. METHODS: The dopaminergic neuronal cell line, ReNcell VM, was used. Reverse transcription-polymerase chain reaction (RT-PCR), real time-quantitative PCR, Western blot, dot-blot, and Chromatin immunoprecipitation were conducted. The substantia nigra tissues of postmortem PD samples were used to confirm the level of TET1 expression. RESULTS: In the human dopaminergic cell line, ReNcell VM, overexpression of the DNA-binding domain of TET1 (TET1-CXXC) led to significant repression of α-SYN. On the contrary, knocking down of TET1 led to significantly higher expression of α-SYN. However, overexpression of the DNA-hydroxymethylating catalytic domain of TET1 failed to change the expression of α-SYN. Altogether, we showed that TET1 is a repressor for SNCA, and a CXXC domain of TET1 is the primary mediator for this repressive action independent of its hydroxymethylation activity. TET1 levels in PD patients are significantly lower than that in the controls. CONCLUSION: We identified that TET1 acts as a repressor for SNCA by binding the intron1 regions of the gene. As a high level of α-SYN is strongly implicated in the pathogenesis of PD, discovering a repressor for the gene encoding α-SYN is highly important for developing novel therapeutic strategies for the disease.

9.
Food Sci Biotechnol ; 31(11): 1377-1387, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36060574

ABSTRACT

Acrylic acid (AA) chemical that endangers human health through contamination of water, soil, and foods. In this study, the extraction, purification, and detection of AA in various food products were established. The contamination level of AA in food products was investigated as well. Food matrices that were used for method validation were crop, fruit, vegetable, seaweed, beverage, sauce, paste, and pickled food, where the validation was confirmed through cross-checking between two different laboratories by checking the accuracy and precision. Furthermore, sample volume for analysis was optimized. Sonication and syringe filtering were all steps preparing headspace analyzer (HA) before GC-MS analysis. Linearity (R2), limit of detection (LOD), limit of quantitation (LOQ), accuracy and precision of AA, were > 0.99, 0.06-0.17 mg/L, 0.18-0.52 mg/L, 90.97-111.93% and 0.12-9.61 RSD% of intra, inter-day, respectively. White rice sample was the only one sample where AA detected (6.19 mg/L) among 102 food samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01131-x.

10.
Epigenetics ; 17(13): 2075-2081, 2022 12.
Article in English | MEDLINE | ID: mdl-35920441

ABSTRACT

Epigenetic regulation is a crucial factor controlling gene expression. Here, we report our CRISPR/dCas9-based modular epigenetic toolkit that enables gene-specific modulation of epigenetic architecture. By modifying the SunTag framework of dCas9 tagged with five GCN4 moieties, each epigenetic writer is bound to scFv and target-specific sgRNA, and this system is able to modify multiple epigenetic marks in a target-specific manner. We successfully demonstrated that this system is efficient in modifying individual histone post-translational modifications. We display its utility as a tool to understand the contributions of specific histone marks on gene expression by screening a large promoter region and identifying differential outcomes with high base-pair resolution. This epigenetic toolkit can be easily altered with a large variety of epigenetic effectors and is a useful tool for researchers to use in understanding gene-specific epigenetic changes and their relation to gene expression.


Subject(s)
Epigenesis, Genetic , Epigenomics , Gene Editing , CRISPR-Cas Systems , DNA Methylation , Promoter Regions, Genetic
11.
PLoS One ; 17(7): e0272085, 2022.
Article in English | MEDLINE | ID: mdl-35901090

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by inclusions of aggregated α-synuclein (α-Syn). Oxidative stress plays a critical role in nigrostriatal degeneration and is responsible for α-Syn aggregation in PD. Vitamin C or ascorbic acid acts as an effective antioxidant to prevent free radical damage. However, vitamin C is easily oxidized and often loses its physiological activity, limiting its therapeutic potential. The objective of this study was to evaluate whether NXP031, a new compound we developed consisting of Aptamin C and Vitamin C, is neuroprotective against α-synucleinopathy. To model α-Syn induced PD, we stereotactically injected AAV particles overexpressing human α-Syn into the substantia nigra (SN) of mice. One week after AAV injection, NXP031 was administered via oral gavage every day for eight weeks. We found that oral administration of NXP031 ameliorated motor deficits measured by the rotarod test and prevented the loss of nigral dopaminergic neurons caused by WT-α-Syn overexpression in the SN. Also, NXP031 blocked the propagation of aggregated α-Syn into the hippocampus by alleviating oxidative stress. These results indicate that NXP031 can be a potential therapeutic for PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Ascorbic Acid/pharmacology , Disease Models, Animal , Dopamine/pharmacology , Dopaminergic Neurons/metabolism , Humans , Mice , Oxidative Stress , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
12.
Cancers (Basel) ; 13(12)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202984

ABSTRACT

Breast cancer is the most frequently occurred cancer type and the second cause of death in women worldwide. Alternative splicing (AS) is the process that generates more than one mRNA isoform from a single gene, and it plays a major role in expanding the human protein diversity. Aberrant AS contributes to breast cancer metastasis and resistance to chemotherapeutic interventions. Therefore, identifying cancer-specific isoforms is the prerequisite for therapeutic interventions intended to correct aberrantly expressed AS events. Here, we performed RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) in breast cancer cells, to identify global breast cancer-specific AS defects. By RT-PCR validation, we demonstrate the high accuracy of RASL-seq results. In addition, we analyzed identified AS events using the Cancer Genome Atlas (TCGA) database in a large number of non-pathological and breast tumor specimens and validated them in normal and breast cancer samples. Interestingly, aberrantly regulated AS cassette exons in cancer tissues do not encode for known functional domains but instead encode for amino acids constituting regions of intrinsically disordered protein portions characterized by high flexibility and prone to be subjected to post-translational modifications. Collectively, our results reveal novel AS errors occurring in human breast cancer, potentially affecting breast cancer-related biological processes.

13.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208021

ABSTRACT

Atopic dermatitis (AD), a chronic inflammatory skin disease, is characterized by eczemous lesions on the skin that manifest as severe itching and last a long time. AD is thought to be a response to local allergens, including house dust mites (HDMs). Aptamin C is a modified form of vitamin C comprised of aptamers (DNA fragments) that bind specifically to vitamin C and inhibit its oxidation, thereby increasing its stability and antioxidant effects. It is already known that vitamin C shows an anti-inflammatory effect on skin inflammation. Oxidative stress is one of the major causes of inflammatory diseases, including HDM-induced skin inflammation, suggesting that the antioxidant activity of Aptamin C could regulate inflammatory responses to HDMs in the skin keratinocyte cell line HaCaT and primary skin keratinocytes. Aptamin C not only inhibited HDM-induced proliferation of both type of cells, but suppressed HDM-induced increases in interleukin (IL)-1α and IL-6 production by these cells. In addition, Aptamin C suppressed the production of IL-17 and IL-22 by T cells, which are closely associated with AD pathogenesis, as well as HDM-induced IL-22Rα expression. Aptamin C also reduced the production of thymus and activation-regulated chemokine (TARC) by suppressing the interaction between IL-22 and IL-22Rα, as well as reducing T cell migration. Although HDM treatment markedly increased the expression of glial cell line-derived neurotrophic factor (GDNF), which is associated with itching in AD skin lesions, this increase was reduced by Aptamin C treatment. Taken together, these results suggest that Aptamin C can effectively regulate inflammatory lesions, such as AD, by regulating the production of inflammatory cytokines and GDNF induced by HDM.

14.
EMBO Mol Med ; 13(2): e12188, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33428332

ABSTRACT

Epigenetic deregulation of α-synuclein plays a key role in Parkinson's disease (PD). Analysis of the SNCA promoter using the ENCODE database revealed the presence of important histone post-translational modifications (PTMs) including transcription-promoting marks, H3K4me3 and H3K27ac, and repressive mark, H3K27me3. We investigated these histone marks in post-mortem brains of controls and PD patients and observed that only H3K4me3 was significantly elevated at the SNCA promoter of the substantia nigra (SN) of PD patients both in punch biopsy and in NeuN-positive neuronal nuclei samples. To understand the importance of H3K4me3 in regulation of α-synuclein, we developed CRISPR/dCas9-based locus-specific H3K4me3 demethylating system where the catalytic domain of JARID1A was recruited to the SNCA promoter. This CRISPR/dCas9 SunTag-JARID1A significantly reduced H3K4me3 at SNCA promoter and concomitantly decreased α-synuclein both in the neuronal cell line SH-SY5Y and idiopathic PD-iPSC derived dopaminergic neurons. In sum, this study indicates that α-synuclein expression in PD is controlled by SNCA's histone PTMs and modulation of the histone landscape of SNCA can reduce α-synuclein expression.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , alpha-Synuclein , Dopaminergic Neurons , Histone Code , Humans , Parkinson Disease/genetics , alpha-Synuclein/genetics
15.
Neurosci Lett ; 740: 135425, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33075422

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Oxidative stress has been identified as one of the major causes of nigrostriatal degeneration in PD. Ascorbic acid plays a role as an efficient antioxidant to protect cells from free radical damage, but it is easily oxidized and loses its antioxidant activity. To overcome this limitation, we have recently developed NXP031, a single-stranded DNA aptamer that binds to ascorbic acid with excellent specificity, reducing its oxidation and increasing its efficacy. This study investigated the neuroprotective effects of NXP031 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. Acute degeneration of nigral dopaminergic neurons was induced by four consecutive treatments of MPTP (20 mg/kg) in male C57BL/6 J mice. NXP031 (Vitamin C/Aptamin C 200 mg/4 mg/kg) was administered intraperitoneally for 5 days following MPTP. We observed that the administration of NXP031 ameliorated MPTP-induced loss of dopaminergic neurons in the SN and exhibited improvement of MPTP-mediated motor impairment. We further found that NXP031 increased plasma ascorbic acid levels and inhibited microglia activation-induced neuroinflammation in the SN, which might contribute to the protective effects of NXP031 on nigrostriatal degeneration. Our findings suggest that NXP031 could be a potential therapeutic intervention in PD.


Subject(s)
MPTP Poisoning/drug therapy , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/drug therapy , Animals , Ascorbic Acid/blood , Ascorbic Acid/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , Nerve Degeneration/pathology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Postural Balance/drug effects , Psychomotor Performance/drug effects , Substantia Nigra/pathology
16.
Eur J Neurosci ; 52(4): 3242-3255, 2020 08.
Article in English | MEDLINE | ID: mdl-31958881

ABSTRACT

Animal models of human diseases are crucial experimental tools to investigate the mechanisms involved in disease pathogenesis and to develop new therapies. In spite of the numerous animal models currently available that reproduce several neuropathological features of Parkinson disease (PD), it is challenging to have one that consistently recapitulates human PD conditions in both motor behaviors and biochemical pathological outcomes. Given that, we have implemented a new paradigm to expose rats to a chronic low dose of paraquat (PQ), using osmotic minipumps and characterized the developed pathologic features over time. The PQ exposure paradigm used lead to a rodent model of PD depicting progressive nigrostriatal dopaminergic neurodegeneration, characterized by a 41% significant loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc), a significant decrease of 18% and 40% of dopamine levels in striatum at week 5 and 8, respectively, and a significant 1.5-fold decrease in motor performance. We observed a significant increase of microglia activation state, sustained levels of α-synucleinopathy and increased oxidative stress markers in the SNpc. In summary, this is an explorative study that allowed to characterize an improved PQ-based rat model that recapitulates cardinal features of PD and may represent an attractive tool to investigate several mechanisms underlying the various aspects of PD pathogenesis as well as for the validation of the efficacy of new therapeutic approaches that targets different mechanisms involved in PD neurodegeneration.


Subject(s)
Paraquat , Parkinson Disease , Animals , Corpus Striatum , Disease Models, Animal , Dopaminergic Neurons , Paraquat/toxicity , Pars Compacta , Rats , Substantia Nigra
17.
J Cosmet Dermatol ; 19(4): 970-976, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31353789

ABSTRACT

BACKGROUND: Vitamin C (also known as L-ascorbic acid) plays a critical role in reactive oxygen species (ROS) reduction and cell regeneration by protecting cell from oxidative stress. Although vitamin C is widely used in cosmetic and therapeutic markets, there is considerable evidence that vitamin C easily undergoes oxidation by air, pH, temperature, and UV light upon storage. This deficiency of vitamin C decreases its potency as an antioxidant and reduces the shelf-life of products containing vitamin C as its ingredient. To overcome the deficiency of vitamin C, we have developed Aptamin C, an innovative DNA aptamer maximizing the antioxidant efficacy of vitamin C by binding to the reduced form of vitamin C and delaying its oxidation. METHODS: Binding of Aptamin C with vitamin C was determined using ITC analysis. ITC experiment was performed 0.2 mmol/L vitamin C that was injected 25 times in 2 µL aliquots into the 1.8 mL sample cell containing the Aptamin C at a concentration of 0.02 mmol/L. The data were fitted to a one-site binding isotherm using with origin program for ITC v.5.0. RESULTS: To investigate the effect of Aptamin C and vitamin C complex in human skins, both in vitro and clinical tests were performed. We observed that the complex of Aptamin C and vitamin C was significantly effective in wrinkle improvement, whitening effect, and hydration increase. In the clinical test, subjects treated with the complex showed dramatic improvement in skin irritation and itching. No adverse reaction was presented by Aptamin C complex in the test. CONCLUSION: Taken together, these results showed that Aptamin C, an innovative novel compound, should potentially be served as a key cosmeceutical ingredient for a range of skin conditions.


Subject(s)
Antioxidants/administration & dosage , Aptamers, Nucleotide/administration & dosage , Ascorbic Acid/administration & dosage , Cosmeceuticals/administration & dosage , Skin/drug effects , Antioxidants/adverse effects , Antioxidants/chemistry , Aptamers, Nucleotide/adverse effects , Aptamers, Nucleotide/chemistry , Ascorbic Acid/adverse effects , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/chemistry , Cell Line , Cell Survival/drug effects , Cosmeceuticals/adverse effects , Cosmeceuticals/chemistry , Drug Compounding/methods , Drug Storage , Female , Fibroblasts , Humans , Middle Aged , Oxidation-Reduction , Oxidative Stress/drug effects , Skin/cytology , Skin Aging/drug effects , Skin Irritancy Tests , Skin Pigmentation/drug effects , Water Loss, Insensible/drug effects
18.
Mol Brain ; 11(1): 29, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29801501

ABSTRACT

Alpha-synuclein (α-SYN) is one of the key contributors in Parkinson's disease (PD) pathogenesis. Despite the fact that increased α-SYN levels are considered one of the key contributors in developing PD, the molecular mechanisms underlying the regulation of α-SYN still needs to be elucidated. Since the 3' untranslated regions (3'UTRs) of messenger RNAs (mRNAs) have important roles in translation, localization, and stability of mRNAs through RNA binding proteins (RBPs) and microRNAs (miRNAs), it is important to identify the exact length of 3'UTRs of transcripts in order to understand the precise regulation of gene expression. Currently annotated human α-SYN mRNA has a relatively long 3'UTR (2529 nucleotides [nt]) with several isoforms. RNA-sequencing and epigenomics data have suggested, however, the possible existence of even longer transcripts which extend beyond the annotated α-SYN 3'UTR sequence. Here, we have discovered the novel extended form of α-SYN 3'UTR (3775 nt) in the substantia nigra of human postmortem brain samples, induced pluripotent stem cell (iPSC)-derived dopaminergic neurons, and other human neuronal cell lines. Interestingly, the longer variant reduced α-SYN translation. The extended α-SYN 3'UTR was significantly lower in iPSC-derived dopaminergic neurons from sporadic PD patients than controls. On the other hand, α-SYN protein levels were much higher in PD cases, showing the strong negative correlation with the extended 3'UTR. These suggest that dysregulation of the extended α-SYN 3'UTR might contribute to the pathogenesis of PD.


Subject(s)
3' Untranslated Regions/genetics , Brain/metabolism , alpha-Synuclein/genetics , Base Sequence , Cell Line, Tumor , Histones/metabolism , Humans , Lysine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
19.
Chembiochem ; 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29700982

ABSTRACT

Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.

20.
J Microbiol Biotechnol ; 28(5): 765-775, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29551019

ABSTRACT

Using MCF7 breast cancer cells, we tested the anticancer activity of metabolites from 130 strains of myxobacteria newly isolated in South Korea. Of these, three strains whose metabolites had high anticancer activity and low cell toxicity were selected and identified by their fruiting body morphology, cell morphology, and 16S rRNA sequence. Strains KYC4030 and KYC4048 were determined to be Myxococcus fulvus, whereas strain KYC4081 was identified as Corallococcus coralloides. We found that metabolites of M. fulvus KYC4048 demonstrated no toxicity in normal cells but specifically induced cancer cell death by suppressing the expression of WNT2B. This discovery highlights the value of assessing the metabolic and biomedical potential of myxobacteria, even those that are already known but were isolated from new areas, and the possible use of metabolites from M. fulvus KYC4048 in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Breast Neoplasms/metabolism , Myxococcus , Apoptosis/drug effects , Cell Cycle/drug effects , Female , Humans , MCF-7 Cells , Myxococcus/chemistry , Myxococcus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL