Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Investig Clin Urol ; 65(3): 300-310, 2024 May.
Article in English | MEDLINE | ID: mdl-38714521

ABSTRACT

PURPOSE: We developed immune checkpoint molecules to target recombinant dendritic cells (DCs) and verified their anti-tumor efficacy and immune response against prostate cancer. MATERIALS AND METHODS: DCs were generated from mononuclear cells in the tibia and femur bone marrow of mice. We knocked down the programmed death ligand 1 (PD-L1) on monocyte-derived DCs through siRNA PD-L1. Cell surface antigens were immune fluorescently stained through flow cytometry to analyze cultured cell phenotypes. Furthermore, we evaluated the efficacy of monocyte-derived DCs and recombinant DCs in a prostate cancer mouse model with subcutaneous TRAMP-C1 cells. Lastly, DC-induced mixed lymphocyte and lymphocyte-only proliferations were compared to determine cultured DCs' function. RESULTS: Compared to the control group, siRNA PD-L1 therapeutic DC-treated mice exhibited significantly inhibited tumor volume and increased tumor cell apoptosis. Remarkably, this treatment substantially augmented interferon-gamma and interleukin-2 production by stimulating T-cells in an allogeneic mixed lymphocyte reaction. Moreover, we demonstrated that PD-L1 gene silencing improved cell proliferation and cytokine production. CONCLUSIONS: We developed monocyte-derived DCs transfected with PD-L1 siRNA from mouse bone marrow. Our study highlights that PD-L1 inhibition in DCs increases antigen-specific immune responses, corroborating previous immunotherapy methodology findings regarding castration-resistant prostate cancer.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Prostatic Neoplasms , Dendritic Cells/immunology , Animals , Male , Mice , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/genetics , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods
2.
Sci Rep ; 14(1): 9902, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688960

ABSTRACT

Irreversible electroporation (IRE) is a non-thermal ablation technique for local tumor treatment known to be influenced by pulse duration and voltage settings, affecting its efficacy. This study aims to investigate the effects of bipolar IRE with different pulse durations in a prostate cancer mouse model. The therapeutic effectiveness was assessed with in vitro cell experiments, in vivo tumor volume changes with magnetic resonance imaging, and gross and histological analysis in a mouse model. The tumor volume continuously decreased over time in all IRE-treated groups. The tumor volume changes, necroptosis (%), necrosis (%), the degree of TUNEL-positive cell expression, and ROS1-positive cell (%) in the long pulse duration-treated groups (300 µs) were significantly increased compared to the short pulse duration-treated groups (100 µs) (all p < 0.001). The bipolar IRE with a relatively long pulse duration at the same voltage significantly increased IRE-induced cell death in a prostate cancer mouse model.


Subject(s)
Disease Models, Animal , Electroporation , Prostatic Neoplasms , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Mice , Electroporation/methods , Cell Line, Tumor , Humans , Magnetic Resonance Imaging , Tumor Burden , Apoptosis
3.
Prostate Int ; 11(2): 83-90, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37409095

ABSTRACT

Background: Metformin and phenformin, biguanide derivatives that are widely used to treat type 2 diabetes mellitus, have recently been shown to exert potential anticancer effects in prostate cancer. This study compared the antiprostate cancer effects of the novel biguanide derivative IM176 with those of metformin and phenformin. Methods: Prostate cancer cell lines and patient-derived castration-resistant prostate cancer (CRPC) cells were treated with IMI76, metformin, and phenformin. The effects of these agents on cell viability, annexin V-FITC apoptosis, mammalian target of rapamycin inhibition, protein expression and phosphorylation, and gene expression were evaluated. Results: IM176 dose dependently reduced the viability of all prostate cancer cell lines tested, with IC50s (LNCaP: 18.5 µM; 22Rv1: 36.8 µM) lower than those of metformin and phenformin. IM176 activated AMP-activated protein kinase, inhibiting mammalian target of rapamycin and reducing the phosphorylation of p70S6K1 and S6. IM176 inhibited the expression of androgen receptor, the androgen receptor splice variant 7, and prostate-specific antigen in LNCaP and 22Rv1 cells. IM176 increased caspase-3 cleavage and annexin V-positive/propidium iodide-positive cells, which indicated apoptosis. Moreover, IM176 reduced viability, with low IC50, in cultured cells derived from two patients with CRPC. Conclusion: The antitumor effects of IM176 were comparable with those of other biguanides. IM176 may therefore be a novel candidate for the treatment of patients with prostate cancer, including those with CRPC.

4.
Bioeng Transl Med ; 8(1): e10348, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684108

ABSTRACT

Changes in specific circulating RNA (circRNA) expressions can serve as diagnostic noninvasive biomarkers for prostate cancer (PCa). However, there are still unmet needs, such as unclear types and roles of circRNAs, PCa detection in benign prostatic hyperplasia (BPH) by unstandardized methods, and limitations of sample volume capacity and low circRNA concentrations. This study reports a simple and rapid circRNA enrichment and isolation technique named "HAZIS-CirR" for the analysis of urinary circRNAs. The method utilizes homobifunctional hydrazides with amine-modified zeolite and polyvinylidene fluoride (PVDF) syringe filtration for combining electrostatic and covalent coupling and size-based filtration, and it offers instrument-free isolation of circRNAs in 20 min without volume limitation, thermoregulation, and lysis. HAZIS-CirR has high capture efficiency (82.03%-92.38%) and a 10-fold more sensitive detection limit (20 fM) than before enrichment (200 fM). The clinical utility of HAZIS-CirR is confirmed by analyzing circulating mRNAs and circulating miRNAs in 89 urine samples. Furthermore, three miRNA panels that differentiate PCa from BPH and control, PCa from control, and BPH from control, respectively, are established by comparing miRNA levels. HAZIS-CirR will be used as an optimal and established method for the enrichment and isolation of circRNAs as diagnostic, prognostic, and predictive biomarkers in human cancers.

5.
Sci Rep ; 12(1): 22336, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572706

ABSTRACT

As a non-thermal ablation method, irreversible electroporation (IRE) has been widely investigated in the treatment of prostate cancer. However, no consensus has been achieved on the optimal parameters of IRE for prostate cancer. Since high voltage is known to carry risks of muscle contraction and patient discomfort, it is crucial to identify the minimum but effective and safer applied voltage to inhibit tumor growth. In this study, the effect of different applied voltages of IRE on prostate cancer was evaluated in BALB/c nude mice. Mathematical simulation and measurement of the actual ablation area revealed a larger ablation area at a higher voltage. In in vivo experiment, except for the three different voltages applied, all groups received identical electrical conditions: pulse number, 180 (20 groups × 9 pulses/group); pulse width, 100 µs; pulse interval, 2 ms; distance between the electrodes, 5 mm; and electrode exposure length, 15 mm. Whilst the tumor volume initially decreased in the 500 V (1000 V/cm) and 700 V (1400 V/cm) groups and subsequently increased, only a transient increase followed by a continuous decrease until the sacrifice was observed in the 900 V (1800 V/cm) group. This result demonstrated a lasting effect of a higher applied voltage on tumor growth inhibition. The histological, immunohistochemical, and western blot findings all confirmed IRE-induced apoptosis in the treatment groups. Taken together, 900 V seemed to be the minimum applied voltage required to reduce tumor growth, though subsequent studies are anticipated to further narrow the voltage intervals and lower the minimum voltage required for tumor inhibition.


Subject(s)
Electroporation , Prostatic Neoplasms , Humans , Male , Animals , Mice , Mice, Nude , Electroporation/methods , Prostatic Neoplasms/therapy , Disease Models, Animal , Computer Simulation
6.
Front Oncol ; 12: 972572, 2022.
Article in English | MEDLINE | ID: mdl-36212458

ABSTRACT

Objective: The glucocorticoid receptor (GR) promotes resistance to androgen receptor (AR)-targeting therapies in castration-resistant prostate cancer (CRPC) by bypassing AR blockade. However, the clinical relevance of evaluating GR expression in patients with CRPC has not been determined. The present study investigated the association of relative GR expression in CRPC tissue samples with treatment response to AR-targeting therapy. Methods: Levels of GR, AR-FL, and AR-V7 mRNAs were measured in prostate cancer tissue from prospectively enrolled CRPC patients who were starting treatment. Patients were divided into groups with high and low AR-V7/AR-FL ratios and with high and low GR/AR-FL ratios. The primary endpoint was prostate-specific antigen (PSA) response rate to treatment. Results: Evaluation of 38 patients treated with AR-targeting therapies showed that the PSA response rate was significantly higher in patients with low than high AR-V7/AR-FL ratios (77.8% vs. 25.0%, p=0.003) and in patients with low than high GR/AR-FL ratios (81.3% vs. 27.3%, p=0.003). Patients with low GR/AR-FL ratios had higher rates of PSA progression-free survival (46.0% vs. 22.4%, p=0.006), radiologic progression-free survival (28.9% vs. 10.0%, p=0.02), and overall survival (75.2% vs. 48.0%, p=0.037) than patients with high GR/AR-FL ratios. The association of GR/AR-FL ratio with PSA response to AR-targeting therapy remained significant in multivariable models. Evaluation of the 14 patients who received taxane chemotherapy showed that PSA response rates did not differ significantly in those with low and high AR-V7/AR-FL and GR/AR-FL ratios, although no definitive conclusions can be drawn due to the small number of patients. Conclusion: Relative GR expression is associated with sensitivity to AR-targeting therapy and survival in patients with CRPC. Large-scale prospective validation and liquid biopsy-based studies are warranted.

7.
J Extracell Vesicles ; 11(2): e12195, 2022 02.
Article in English | MEDLINE | ID: mdl-35188341

ABSTRACT

Cancer cell-derived extracellular vesicles (EVs) are promising biomarkers for cancer diagnosis and prognosis. However, the lack of rapid and sensitive isolation techniques to obtain EVs from clinical samples at a sufficiently high yield limits their practicability. Chimeric nanocomposites of lactoferrin conjugated 2,2-bis(methylol)propionic acid dendrimer-modified magnetic nanoparticles (LF-bis-MPA-MNPs) are fabricated and used for simple and sensitive EV isolation from various biological samples via a combination of electrostatic interaction, physically absorption, and biorecognition between the surfaces of the EVs and the LF-bis-MPA-MNPs. The speed, efficiency, recovery rate, and purity of EV isolation by the LF-bis-MPA-MNPs are superior to those obtained by using established methods. The relative expressions of exosomal microRNAs (miRNAs) from isolated EVs in cancerous cell-derived exosomes are verified as significantly higher than those from noncancerous ones. Finally, the chimeric nanocomposites are used to assess urinary exosomal miRNAs from urine specimens from 20 prostate cancer (PCa), 10 benign prostatic hyperplasia (BPH), patients and 10 healthy controls. Significant up-regulation of miR-21 and miR-346 and down-regulation of miR-23a and miR-122-5p occurs in both groups compared to healthy controls. LF-bis-MPA-MNPs provide a rapid, simple, and high yield method for human excreta analysis in clinical applications.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Nanocomposites , Prostatic Neoplasms , Exosomes/metabolism , Extracellular Vesicles/metabolism , Humans , Male , MicroRNAs/metabolism , Prostatic Neoplasms/diagnosis
8.
Sci Rep ; 11(1): 17194, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433890

ABSTRACT

The exposure of the prostate to high electric field strength during irreversible electroporation (IRE) has been extensively investigated. Multiple monopolar electrodes, however, have risks of organ piercing and bleeding when placing electrodes. A novel bipolar electrode made of pure platinum and stainless steel was developed for prostate cancer ablation. Voltages of 500 and 700 V were applied to the beagle prostate with this electrode to evaluate ablated tissues and their characteristics. IRE procedures were technically successful in all dogs without procedure-related complications. The current that flowed through the anode and cathode while applying 500 and 700 V were 1.75 ± 0.25 A and 2.22 ± 0.35 A, respectively. TUNEL assays showed that the estimated ablated areas when applying 500 and 700 V were 0.78 cm2 and 1.21 cm2, respectively. The minimum electric field strength threshold required for induction of IRE was 800 V/cm. The platinum electrode was resistant to corrosion. The IRE procedure for beagle prostates using a single bipolar electrode was technically feasible and safe. The novel bipolar electrode has great potential for treating human prostate cancer with fewer IRE-related complications.


Subject(s)
Ablation Techniques/methods , Electrodes , Electroporation/methods , Prostatic Neoplasms/therapy , Ablation Techniques/instrumentation , Animals , Dogs , Electric Power Supplies , Electroporation/instrumentation , Male , Platinum , Prostate/pathology , Prostatic Neoplasms/surgery
9.
Cell Mol Life Sci ; 77(22): 4663-4673, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31894360

ABSTRACT

The androgen receptor (AR) plays an important role in the pathogenesis and development of prostate cancer (PCa). Mostly, PCa progresses to androgen-independent PCa, which has activated AR signaling from androgen-dependent PCa. Thus, inhibition of AR signaling may be an important therapeutic target in androgen-dependent and castration-resistant PCa. In this study, we determined the anticancer effect of a newly found natural compound, sakurasosaponin (S-saponin), using androgen-dependent and castration-resistant PCa cell lines. S-saponin induces mitochondrial-mediated cell death in both androgen-dependent (LNCaP) and castration-resistant (22Rv1 and C4-2) PCa cells, via AR expression. S-saponin treatment induces a decrease in AR expression in a time- and dose-dependent manner and a potent decrease in the expression of its target genes, including prostate-specific antigen (PSA), transmembrane protease, serin 2 (TMPRSS2), and NK3 homeobox 1 (NKX3.1). Furthermore, S-saponin treatment decreases B-cell lymphoma-extra large (Bcl-xL) and mitochondrial membrane potential, thereby increasing the release of cytochrome c into the cytosol. Moreover, Bcl-xL inhibition and subsequent mitochondria-mediated cell death caused by S-saponin were reversed by Bcl-xL or AR overexpression. Interestingly, S-saponin-mediated cell death was significantly reduced by a reactive oxygen species (ROS) scavenger, N-acetylcystein. Animal xenograft experiments showed that S-saponin treatment significantly reduced tumor growth of AR-positive 22Rv1 xenografts but not AR-negative PC-3 xenografts. Taken together, for the first time, our results revealed that S-saponin induces mitochondrial-mediated cell death in androgen-dependent and castration-resistant cells through regulation of AR mechanisms, including downregulation of Bcl-xL expression and induction of ROS stress by decreasing mitochondrial membrane potential.


Subject(s)
Antineoplastic Agents/poisoning , Cell Death/drug effects , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Saponins/pharmacology , Androgens/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Membrane Potential, Mitochondrial , Mice , Mice, Nude , PC-3 Cells , Prostate/drug effects , Prostate/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Reactive Oxygen Species/metabolism , bcl-X Protein/metabolism
11.
J Exp Clin Cancer Res ; 38(1): 440, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31666104

ABSTRACT

In the original publication of this article [1], there are mistakes in Fig. 4d. The corrected Fig. 4 should be.

12.
Sci Rep ; 9(1): 16794, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727962

ABSTRACT

In total, 95 prostate cancer (Pca) patients who underwent transurethral resection of the prostate from 2000 to 2013 were assigned to four groups: Group 1, hormone-naïve and T1a or T1b Pca (n = 17); Group 2, hormone-sensitive and metastatic Pca (n = 33); Group 3, chemo-naïve castration-resistant Pca (CRPC), (n = 18); and Group 4, CRPC with chemotherapy (n = 27). Full-length androgen receptor (ARfl) transcript levels significantly increased from Group 1 through to Group 3 (p = 0.045), but decreased from Group 3 through to Group 4. AR splice variant 7 (ARV7) and glucocorticoid receptor (GR) transcript levels significantly increased from Group 1 through to Group 4 (p = 0.002 and 0.049, respectively). Kaplan-Meier curve revealed that the high transcript level of these three receptors resulted in significantly poorer cancer-specific survival (CSS) than that by low transcript level, although Cox regression analysis revealed that the ARV7 level alone was an independent prognostic factor for CSS in CRPC patients (high vs. low: hazard ratio, 1.897; 95% confidence interval, 1.102-3.625; p = 0.042). In conclusion, ARV7 and GR transcript levels significantly increase as Pca progresses to CRPC.


Subject(s)
Alternative Splicing , Bridged-Ring Compounds/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Taxoids/administration & dosage , Aged , Aged, 80 and over , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Organ Specificity , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Glucocorticoid/genetics , Regression Analysis , Survival Analysis , Taxoids/pharmacology , Treatment Outcome
13.
In Vivo ; 33(5): 1615-1620, 2019.
Article in English | MEDLINE | ID: mdl-31471413

ABSTRACT

AIM: To evaluate the clinical efficacy of a circulating tumor cell (CTC) test by comparison between healthy volunteers and patients with localized prostate cancer including those under active surveillance. MATERIALS AND METHODS: CTC counts in peripheral blood were compared between patients with prostate cancer (n=45) and healthy volunteers (n=17). CTCs were identified based on the expression of epithelial cell adhesion molecule (EpCAM) and counted using a SMART BIOPSY™ SYSTEM. RESULTS: The number of EpCAM+ cells was significantly higher in patients with cancer than in healthy volunteers. Among the low-risk patients (n=9), two had up-staging and six had up-grading. Among those up-staged, there was one case which was EpCAM+ Among those cases up-graded, three were EpCAM+ In those with stage T2 tumors, the presence of Gleason pattern 5 was positively correlated with EpCAM positivity (rho=0.59, p<0.001). CONCLUSION: CTC counts in localized prostate cancer were associated with Gleason pattern 5. Active treatment should be considered for patients with low-risk disease during active surveillance who are found to have EpCAM+ CTCs because of a risk of up-staging and up-grading.


Subject(s)
Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/diagnosis , Adult , Aged , Biomarkers, Tumor , Biopsy , Case-Control Studies , Cell Count , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prostatic Neoplasms/therapy , Reproducibility of Results , Sensitivity and Specificity , Watchful Waiting
14.
J Cancer Res Clin Oncol ; 145(9): 2293-2301, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31401673

ABSTRACT

PURPOSE: Androgen receptors (ARs) are expressed on a variety of cell types, and AR signaling plays an important role in tumor development and progression in several cancers. This in vitro study evaluated the effect of dihydrotestosterone (DHT) on the proliferation of renal cell carcinoma (RCC) cells in relation to AR status. METHODS: Steroid hormone receptor expression was evaluated using RT-PCR and Western blotting. The effect of DHT on cell proliferation and STAT5 phosphorylation was evaluated in RCC cell lines (Caki-2, A498, and SN12C) and primary RCC cells using cell viability assays and Western blotting. ARs and glucocorticoid receptors (GRs) were knocked down with small interfering RNAs before assessing changes in cell proliferation and STAT5 activation. RESULTS: DHT treatment promoted cell proliferation and increased STAT5 phosphorylation regardless of AR status. The AR antagonist bicalutamide reduced kidney cancer cell proliferation, regardless of AR status. AR and GR knockdown blocked STAT5 activation and reduced cell proliferation in all RCC cell lines. In patient-derived primary cells, DHT enhanced cell proliferation and this effect was diminished by treatment with the AR antagonists bicalutamide and enzalutamide and the GR antagonist mifepristone. CONCLUSION: DHT promotes cell proliferation through STAT5 activation in RCC cells, regardless of AR status. DHT appears to utilize the AR and GR pathways to activate STAT5, and the inhibition of AR and GR showed antitumor activity in RCC cells. These data suggest that targeting AR and GR may be a promising new approach to the treatment of RCC.


Subject(s)
Carcinoma, Renal Cell/pathology , Cell Proliferation/drug effects , Dihydrotestosterone/pharmacology , Kidney Neoplasms/pathology , Receptors, Androgen/physiology , Receptors, Glucocorticoid/physiology , STAT5 Transcription Factor/metabolism , Tumor Suppressor Proteins/metabolism , Androgen Receptor Antagonists/pharmacology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , STAT5 Transcription Factor/genetics , Signal Transduction/drug effects , Tumor Suppressor Proteins/genetics
15.
J Exp Clin Cancer Res ; 38(1): 342, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31387608

ABSTRACT

BACKGROUND: Androgen receptor (AR)-targeted treatments improve the survival of castration-resistant prostate cancer (CRPC) patients; however, secondary resistance to these agents ultimately occurs in virtually all patients. Therefore, alternative therapeutic targets are urgently needed. Since growing evidence demonstrates that WNT/ß-catenin signaling plays an important role in CRPC, the antitumor activity and mechanism of action of CWP232291, a small molecule ß-catenin inhibitor, were investigated in prostate cancer. METHODS: We assessed the antitumor activity of CWP232291 in prostate cancer cell lines and primary cells derived from CRPC patients. The effect of CWP232291 on apoptotic cell death, endoplasmic reticulum (ER) stress, cell viability, and WNT/ß-catenin signaling was evaluated by flow cytometry, western blotting, luciferase reporter assay, and fluorescence microscopy. Antitumor efficacy was assessed in two CRPC xenograft mouse models. RESULTS: CWP232291 induced ER stress, resulting in upregulation of the proapoptotic protein CHOP and activation of caspase-3-dependent apoptosis. In addition, CWP232291 suppressed the expression of ß-catenin by affecting WNT-dependent transcriptional activity, and downregulated AR and its splice variants in prostate cancer cells. Antitumor activity was observed in prostate cancer cells in vitro and ex vivo, and antitumor efficacy was observed in vivo. CONCLUSIONS: Beyond providing preclinical evidence of therapeutic efficacy for the novel small molecule ß-catenin inhibitor CWP232291 in CRPC, our results show that inducing ER stress and targeting WNT/ß-catenin signaling may be a novel strategy against CRPC.

16.
Invest New Drugs ; 36(2): 195-205, 2018 04.
Article in English | MEDLINE | ID: mdl-29110173

ABSTRACT

Backgrounds Since most patients with castration-resistant prostate cancer (CRPC) develop resistance to its standard therapy docetaxel, many studies have attempted to identify novel combination treatment to meet the large clinical unmet need. In this study, we examined whether histone deacetylase inhibitors (HDACIs) enhanced the effect of docetaxel on AR signaling in CRPC cells harboring AR and its splice variants. Methods HDACIs (vorinostat and CG200745) were tested for their ability to enhance the effects of docetaxel on cell viability and inhibition of AR signaling in CRPC 22Rv1 and VCaP cells by using CellTiter-Glo™ Luminescent cell viability assay, synergy index analysis and Western blotting. The nuclear localization of AR was examined via immunocytochemical staining in 22Rv1 cells and primary tumor cells from a patient with CRPC. Results Combination treatment with HDACIs (vorinostat or CG200745) and docetaxel synergistically inhibited the growth of 22Rv1 and VCaP cells. Consistently, the combination treatment decreased the levels of full-length AR (AR-FL), AR splice variants (AR-Vs), prostate-specific antigen (PSA), and anti-apoptotic Bcl-2 proteins more efficiently compared with docetaxel or vorinostat alone. Moreover, the combination treatment accelerated the acetylation and bundling of tubulin, which significantly inhibited the nuclear accumulation of AR in 22Rv1 cells. The cytoplasmic colocalization of AR-FL and AR-V7 with microtubule bundles increased after combination treatment in primary tumor cells from a patient with CRPC. Conclusions The results suggested that docetaxel, in combination with HDACIs, suppressed the expression and nuclear translocation of AR-FL and AR-Vs and showed synergistic anti-proliferative effect in CRPC cells. This combination therapy may be useful for the treatment of patients with CRPC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Docetaxel/therapeutic use , Down-Regulation , Histone Deacetylase Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Docetaxel/pharmacology , Down-Regulation/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids , Inhibitory Concentration 50 , Male , Naphthalenes , Protein Stability , Tubulin/metabolism , Vorinostat/pharmacology , Vorinostat/therapeutic use
17.
Prostate ; 77(10): 1128-1136, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28556958

ABSTRACT

BACKGROUND: Androgen and androgen receptor (AR) play essential roles in the development and maintenance of prostate cancer. The recently identified AR splice variants (AR-Vs) have been considered as a plausible mechanism for the primary resistance against androgen deprivation therapy (ADT) in castration-resistant prostate cancer (CRPC). Sodium meta-arsenite (NaAsO2 ; KML001; Kominox), a trivalent arsenical, is an orally bioavailable and water soluble, which is currently in phase I/II clinical trials for the treatment of prostate cancer. It has a potent anti-cancer effect on prostate cancer cells and xenografts. The aim of this study was to examine the effect of NaAsO2 on AR signaling in LNCaP and 22Rv1 CRPC cells. METHODS: We used hormone-sensitive LNCaP cells, hormone-insensitive 22Rv1 cells, and CRPC patient-derived primary cells. We analyzed anti-cancer effect of NaAsO2 using real-time quantitative reverse transcription-PCR, Western blotting, immunofluorescence staining and CellTiter Glo® luminescent assay. Statistical evaluation of the results was performed by one-way ANOVA. RESULTS: NaAsO2 significantly reduced the translocation of AR and AR-Vs to the nucleus as well as their level in LNCaP and 22Rv1 cells. Besides, the level of the prostate-specific antigen (PSA), downstream target gene of AR, was also decreased. This compound was also an effective modulator of AKT-dependent NF-κB activation which regulates AR. NaAsO2 significantly inhibited phosphorylation of AKT and expression and nuclear translocation of NF-κB. We then investigated the effect of NaAsO2 on AR stabilization. NaAsO2 promoted HSP90 acetylation by down-regulating HDAC6, which reduces the stability of AR in prostate cancer cells. CONCLUSIONS: Here, we show that NaAsO2 disrupts AR signaling at multiple levels by affecting AR expression, stability, and degradation in primary tumor cell cultures from prostate cancer patients as well as CRPC cell lines. These results suggest that NaAsO2 could be a novel therapeutics for prostate cancer.


Subject(s)
Arsenites/pharmacology , Prostate , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Sodium Compounds/pharmacology , Cell Line, Tumor , Down-Regulation , Enzyme Inhibitors/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Humans , Male , NF-kappa B/metabolism , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostate-Specific Antigen/analysis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-akt/metabolism , Treatment Outcome
18.
PLoS One ; 10(9): e0137589, 2015.
Article in English | MEDLINE | ID: mdl-26352139

ABSTRACT

We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.


Subject(s)
Apoptosis/drug effects , Arsenites/pharmacology , Autophagy/drug effects , Oxidative Stress/drug effects , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Sodium Compounds/pharmacology , Animals , Antioxidants/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
19.
Prostate ; 75(15): 1747-59, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26250606

ABSTRACT

BACKGROUND: PTEN deletion, mutation or reduced expression occurs in 63% of metastatic prostate tumors, resulting in the activation of PI3K and its downstream targets, AKT and mTOR. Inhibition of the PI3K pathway results in upregulation of the MAPK pathway. Therefore, co-administration of inhibitors of both pathways, GSK2126458 as a dual PI3K/mTOR inhibitor, and AZD6244 as a MEK inhibitor, is able to overcome resistance and increase anti-tumor efficacy. METHODS: PC3, DU145, LNCaP, and CRPC patient-derived cells were used to assess apoptosis upon exposure to the drug combination. The human DU145 and PC3 tumor xenograft mouse model was employed to evaluate in vivo efficacy. CellTiter Glo® luminescent assay, annexin V-FITC apoptosis detection, cell cycle analysis, Western blotting and immunohistochemistry were conducted. Statistical evaluation of the results was performed by one-way ANOVA. RESULTS: The combination of GSK2126458 and AZD6244 inhibited the growth of DU145 and PC3 prostate cancer cells in vitro and in vivo. GSK2126458 decreased phospho-AKT while increasing phospho-ERK and AZD6244 decreased phospho-ERK efficiently while increasing phospho-AKT. The combination of GSK2126458 and AZD6244 decreased both phospho-AKT and phospho-ERK effectively in vitro and in vivo. The combination treatment synergistically induced annexin V-positive cells, sub-G1 cells, and cleavage of caspase-9, caspase-3 and poly-ADP ribose polymerase (PARP) in DU145 cells in vitro. Moreover, the combination decreased the level of Ki-67, and increased TUNEL-positive cells and cleaved caspase-3 in DU145 xenograft tumors implanted in mice. In addition, this combination treatment inhibited both the PI3K and MEK pathway primary in cultures from CRPC patients harboring PTEN loss, leading to synergistic anti-tumor effect. CONCLUSIONS: The combination of GSK2126458 and AZD6244 blocks both the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways simultaneously and is an effective strategy for the treatment of CRPCs.


Subject(s)
Apoptosis/drug effects , Benzimidazoles/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Sulfonamides/pharmacology , Animals , Benzimidazoles/therapeutic use , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Drug Synergism , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Pyridazines , Quinolines/therapeutic use , Sulfonamides/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
20.
Urol Oncol ; 33(3): 113.e19-25, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25499257

ABSTRACT

PURPOSE: We investigated the proportion of regulatory T cells (Treg cells) in the peripheral blood (PB) and among tumor-infiltrating lymphocytes (TILs) of patients with renal cell carcinoma (RCC) compared with age-matched healthy controls (HCs). We also assessed the presence of several immunomodulatory cytokines in these patients. METHODS: The proportion of Treg cells in the PB of 59 patients with clinically localized RCC and 65 HCs, as well as the prevalence of Treg cells among TILs and lymphocytes in normal kidney tissue, were evaluated by flow cytometry using specific monoclonal antibodies recognizing CD4(+), CD25(+), and Foxp3(+) markers. In addition, the levels of transforming growth factor (TGF)-ß1, interleukin-6, tumor necrosis factor-α, and interferon-γ were determined using standard enzyme-linked immunosorbent assay. RESULTS: There was no difference between the mean percentage of Treg cells in the PB of patients with RCC and HCs (P = 0.148). However, the proportion of Treg cells showed a significant positive correlation with tumor size (r = 0.295, P = 0.029), with the percentage of PB Treg cells significantly higher in patients with RCC with large tumors (≥7 cm) than in HCs (4.6 ± 5.8% vs. 1.9 ± 2.6%, P = 0.023). There was no statistically significant difference in the percentage of Treg cells among TILs and lymphocytes in normal kidney tissue (P = 0.629). The mean TGF-ß1 level in patients with RCC was statistically significantly higher than in HCs (P<0.001). CONCLUSIONS: In this study, we provide evidence for an increased proportion of Treg cells in the PB of clinically localized patients with RCC with substantial tumor burden and a higher level of TGF-ß1 compared with age-matched HCs.


Subject(s)
Carcinoma, Renal Cell/blood , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/blood , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta1/metabolism , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Flow Cytometry , Humans , Kidney/metabolism , Leukocytes, Mononuclear/cytology , Lymphocytes, Tumor-Infiltrating/cytology , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...