Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 15(682): eabn5993, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36753561

ABSTRACT

Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.


Subject(s)
Malaria, Falciparum , Malaria , Child , Adult , Animals , Humans , Antigens, Protozoan , Cohort Studies , Merozoites , Antibodies, Protozoan , Plasmodium falciparum , Killer Cells, Natural
2.
Nat Commun ; 13(1): 4098, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835738

ABSTRACT

Ring-infected erythrocytes are the predominant asexual stage in the peripheral circulation but are rarely investigated in the context of acquired immunity against Plasmodium falciparum malaria. Here we compare antibody-dependent phagocytosis of ring-infected parasite cultures in samples from a controlled human malaria infection (CHMI) study (NCT02739763). Protected volunteers did not develop clinical symptoms, maintained parasitaemia below a predefined threshold of 500 parasites/µl and were not treated until the end of the study. Antibody-dependent phagocytosis of both ring-infected and uninfected erythrocytes from parasite cultures was strongly correlated with protection. A surface proteomic analysis revealed the presence of merozoite proteins including erythrocyte binding antigen-175 and -140 on ring-infected and uninfected erythrocytes, providing an additional antibody-mediated protective mechanism for their activity beyond invasion-inhibition. Competition phagocytosis assays support the hypothesis that merozoite antigens are the key mediators of this functional activity. Targeting ring-stage parasites may contribute to the control of parasitaemia and prevention of clinical malaria.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Antibodies, Protozoan , Antigens, Protozoan , Erythrocytes/parasitology , Humans , Malaria, Falciparum/parasitology , Merozoites , Parasitemia , Phagocytosis , Plasmodium falciparum , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...