Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anesth Analg ; 137(5): 996-1006, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37678264

ABSTRACT

BACKGROUND: Renal ischemia and reperfusion (IR) contribute to perioperative acute kidney injury, and oxygen is a key regulator of this process. We hypothesized that oxygen administration during surgery and renal IR would impact postoperative kidney function and injury in mice. METHODS: Mice were anesthetized, intubated, and mechanically ventilated with a fraction of inspired oxygen (F io2 ) 0.10 (hypoxia), 0.21 (normoxia), 0.60 (moderate hyperoxia), or 1.00 (severe hyperoxia) during 67 minutes of renal IR or sham IR surgery. Additional mice were treated before IR or sham IR surgery with 50 mg/kg tempol, a superoxide scavenger. At 24 hours, mice were sacrificed, and blood and kidney collected. We assessed and compared kidney function and injury across groups by measuring blood urea nitrogen (BUN, primary end point), renal histological injury, renal expression of neutrophil gelatinase-associated lipocalin (NGAL), and renal heme oxygenase 1 ( Ho-1 ), peroxisome proliferator-activated receptor gamma coactivator 1-α ( Pgc1-α ), and glutathione peroxidase 4 ( Gpx-4 ) transcripts, to explore potential mechanisms of any effect of oxygen. RESULTS: Hyperoxia and hypoxia during renal IR surgery decreased renal function and increased kidney injury compared to normoxia. Baseline median (interquartile range) BUN was 22.2 mg/dL (18.4-26.0), and 24 hours after IR surgery, BUN was 17.5 mg/dL (95% confidence interval [CI], 1.3-38.4; P = .034) higher in moderate hyperoxia-treated animals, 51.8 mg/dL (95% CI, 24.9-74.8; P < .001) higher in severe hyperoxia-treated animals, and 64.9 mg/dL (95% CI, 41.2-80.3; P < .001) higher in hypoxia-treated animals compared to animals treated with normoxia ( P < .001, overall effect of hyperoxia). Hyperoxia-induced injury, but not hypoxia-induced injury, was attenuated by pretreatment with tempol. Histological injury scores, renal NGAL staining, and renal transcription of Ho-1 and suppression of Pgc1- α followed the same pattern as BUN, in relation to the effects of oxygen treatment. CONCLUSIONS: In this controlled preclinical study of oxygen treatment during renal IR surgery, hyperoxia and hypoxia impaired renal function, increased renal injury, and impacted expression of genes that affect mitochondrial biogenesis and antioxidant response. These results might have implications for patients during surgery when high concentrations of oxygen are frequently administered, especially in cases involving renal IR.

2.
Cells ; 12(14)2023 07 21.
Article in English | MEDLINE | ID: mdl-37508567

ABSTRACT

Ischemia and reperfusion (IR) damage organs and contribute to many disease states. Few effective treatments exist that attenuate IR injury. The augmentation of nitric oxide (NO) signaling remains a promising therapeutic target for IR injury. NO binds to soluble guanylyl cyclase (sGC) to regulate vasodilation, maintain endothelial barrier integrity, and modulate inflammation through the production of cyclic-GMP in vascular smooth muscle. Pharmacologic sGC stimulators and activators have recently been developed. In preclinical studies, sGC stimulators, which augment the reduced form of sGC, and activators, which activate the oxidized non-NO binding form of sGC, increase vasodilation and decrease cardiac, cerebral, renal, pulmonary, and hepatic injury following IR. These effects may be a result of the improved regulation of perfusion and decreased oxidative injury during IR. sGC stimulators are now used clinically to treat some chronic conditions such as heart failure and pulmonary hypertension. Clinical trials of sGC activators have been terminated secondary to adverse side effects including hypotension. Additional clinical studies to investigate the effects of sGC stimulation and activation during acute conditions, such as IR, are warranted.


Subject(s)
Hypertension, Pulmonary , Humans , Soluble Guanylyl Cyclase/metabolism , Signal Transduction , Ischemia , Reperfusion
3.
Shock ; 58(4): 280-286, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36018251

ABSTRACT

ABSTRACT: Introduction: Perioperative alterations in perfusion lead to ischemia and reperfusion injury, and supplemental oxygen is administered during surgery to limit hypoxic injury but can lead to hyperoxia. We hypothesized that hyperoxia impairs endothelium-dependent and endothelium-independent vasodilation but not the vasodilatory response to heme-independent soluble guanylyl cyclase activation. Methods: We measured the effect of oxygen on vascular reactivity in mouse aortas. Mice were ventilated with 21% (normoxia), 60% (moderate hyperoxia), or 100% (severe hyperoxia) oxygen during 30 minutes of renal ischemia and 30 minutes of reperfusion. After sacrifice, the thoracic aorta was isolated, and segments mounted on a wire myograph. We measured endothelium-dependent and endothelium-independent vasodilation with escalating concentrations of acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, and we measured the response to heme-independent soluble guanylyl cyclase activation with cinaciguat. Vasodilator responses to each agonist were quantified as the maximal theoretical response ( Emax ) and the effective concentration to elicit 50% relaxation (EC 50 ) using a sigmoid model and nonlinear mixed-effects regression. Aortic superoxide was measured with dihydroethidium probe and high-performance liquid chromatography quantification of the specific superoxide product 2-hydroxyethidium. Results: Hyperoxia impaired endothelium-dependent (ACh) and endothelium-independent (SNP) vasodilation compared with normoxia and had no effect on cinaciguat-induced vasodilation. The median ACh Emax was 76.4% (95% confidence interval = 69.6 to 83.3) in the normoxia group, 53.5% (46.7 to 60.3) in the moderate hyperoxia group, and 53.1% (46.3 to 60.0) in the severe hyperoxia group ( P < 0.001, effect across groups), while the ACh EC 50 was not different among groups. The SNP Emax was 133.1% (122.9 to 143.3) in normoxia, 128.3% (118.1 to 138.6) in moderate hyperoxia, and 114.8% (104.6 to 125.0) in severe hyperoxia ( P < 0.001, effect across groups), and the SNP EC 50 was 0.38 log M greater in moderate hyperoxia than in normoxia (95% confidence interval = 0.18 to 0.58, P < 0.001). Cinaciguat Emax and EC 50 were not different among oxygen treatment groups (median range Emax = 78.0% to 79.4% and EC 50 = -18.0 to -18.2 log M across oxygen groups). Aorta 2-hydroxyethidium was 1419 pmol/mg of protein (25th-75th percentile = 1178-1513) in normoxia, 1993 (1831-2473) in moderate hyperoxia, and 2078 (1936-2922) in severe hyperoxia ( P = 0.008, effect across groups). Conclusions: Hyperoxia, compared with normoxia, impaired endothelium-dependent and endothelium-independent vasodilation but not the response to heme-independent soluble guanylyl cyclase activation, and hyperoxia increased vascular superoxide production. Results from this study could have important implications for patients receiving high concentrations of oxygen and at risk for ischemia reperfusion-mediated organ injury.


Subject(s)
Acetylcholine , Hyperoxia , Mice , Animals , Soluble Guanylyl Cyclase/pharmacology , Nitroprusside/pharmacology , Acetylcholine/pharmacology , Superoxides/metabolism , Endothelium, Vascular/metabolism , Vasodilation , Vasodilator Agents/pharmacology , Heme , Oxygen/pharmacology , Nitric Oxide/metabolism
4.
Med Res Arch ; 9(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-35419490

ABSTRACT

Introduction: Acute kidney injury (AKI) affects 10% of patients following major surgery and is independently associated with extra-renal organ injury, development of chronic kidney disease, and death. Perioperative renal ischemia and reperfusion (IR) contributes to AKI by, in part, increasing production of reactive oxygen species (ROS) and leading to oxidative damage. Variations in inhaled oxygen may mediate some aspects of IR injury by affecting tissue oxygenation, ROS production, and oxidative damage. We tested the hypothesis that provision of air (normoxia) compared to 100% oxygen (hyperoxia) during murine renal IR affects renal ROS production and oxidative damage. Methods: We administered 100% oxygen or 21% oxygen (air) to 8-9 week-old FVB/N mice and performed dorsal unilateral nephrectomy with contralateral renal ischemia/reperfusion surgery while mice spontaneously ventilated. We subjected mice to 30 minutes of ischemia and 30 minutes of reperfusion prior to sacrifice. We obtained an arterial blood gas (ABG) by performing sternotomy and left cardiac puncture. We stained the kidney with pimonidazole, a marker of tissue hypoxia; 4-HNE, a marker of ROS-production; and we measured F2-isoprostanes in homogenized tissue to quantify oxidative damage. Results: Hyperoxia during IR increased arterial oxygen content compared to normoxia, but both groups of mice were hypoventilating at the time of ABG sampling. Renal tissue hypoxia following reperfusion was similar in both treatment groups. ROS production was similar in the cortex of mice (3.8% area in hyperoxia vs. 3.1% in normoxia, P=0.19) but increased in the medulla of hyperoxia-treated animals (6.3% area in hyperoxia vs. 4.5% in nomoxia, P=0.02). Renal F2-isoprostanes were similar in treatment groups (2.2 pg/mg kidney in hyperoxia vs. 2.1 pg/mg in normoxia, P=0.40). Conclusions: Hyperoxia during spontaneous ventilation in murine renal IR did not appear to affect renal hypoxia following reperfusion, but hyperoxia increased medullary ROS production compared to normoxia.

5.
Electroanalysis ; 30(10): 2241-2249, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30930594

ABSTRACT

Capillary electrophoresis coupled with electrochemical detection can be a powerful analysis tool; however, previous methods developed to integrate these two techniques can often times be fragile and have alignment issues such that there are no commercially available approaches. In this paper, we present the use of a 3D-printed Wall-Jet Electrode device for integrating capillary electrophoresis with electrochemical detection. A pressure mobilization step was also utilized to further reduce noise by allowing the electrophoresis separation step to continue only until the first analyte was close to elution. Then, the separation voltage was terminated and pressure-based flow was used for elution of the analyte bands onto the electrode surface with a wall-jet configuration. It is shown that the pressure-based elution is beneficial for the reduction of baseline noise and elimination of field effects. A mixture of catecholamines were separated to demonstrate effectiveness of the system. In addition, the system was coupled with a Beckman Coulter commercial capillary electrophoresis instrument in a straightforward manner. The system was also shown to be effective in separations done with a high ionic strength physiological buffer. This 3D printing approach can be used by researchers to utilize electrochemical detection on commercial capillary electrophoresis systems by downloading the provided STL and/or CAD files.

SELECTION OF CITATIONS
SEARCH DETAIL
...