Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735899

ABSTRACT

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Feasibility Studies , Imaging, Three-Dimensional , X-Ray Microtomography , Humans , Chondrosarcoma/diagnostic imaging , Chondrosarcoma/pathology , X-Ray Microtomography/methods , Aged , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Middle Aged , Retrospective Studies , Imaging, Three-Dimensional/methods , Male , Female , Staining and Labeling/methods
2.
J Am Heart Assoc ; 13(8): e033287, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563363

ABSTRACT

BACKGROUND: We aimed to correlate alterations in the rat sarcoma virus (RAS)/mitogen-activated protein kinase pathway in vascular anomalies to the clinical phenotype for improved patient and treatment stratification. METHODS AND RESULTS: This retrospective multicenter cohort study included 29 patients with extracranial vascular anomalies containing mosaic pathogenic variants (PVs) in genes of the RAS/mitogen-activated protein kinase pathway. Tissue samples were collected during invasive treatment or clinically indicated biopsies. PVs were detected by the targeted sequencing of panels of genes known to be associated with vascular anomalies, performed using DNA from affected tissue. Subgroup analyses were performed according to the affected genes with regard to phenotypic characteristics in a descriptive manner. Twenty-five vascular malformations, 3 vascular tumors, and 1 patient with both a vascular malformation and vascular tumor presented the following distribution of PVs in genes: Kirsten rat sarcoma viral oncogene (n=10), neuroblastoma ras viral oncogene homolog (n=1), Harvey rat sarcoma viral oncogene homolog (n=5), V-Raf murine sarcoma viral oncogene homolog B (n=8), and mitogen-activated protein kinase kinase 1 (n=5). Patients with RAS PVs had advanced disease stages according to the Schobinger classification (stage 3-4: RAS, 9/13 versus non-RAS, 3/11) and more frequent progression after treatment (RAS, 10/13 versus non-RAS, 2/11). Lesions with Kirsten rat sarcoma viral oncogene PVs infiltrated more tissue layers compared with the other PVs including other RAS PVs (multiple tissue layers: Kirsten rat sarcoma viral oncogene, 8/10 versus other PVs, 6/19). CONCLUSIONS: This comparison of patients with various PVs in genes of the RAS/MAPK pathway provides potential associations with certain morphological and clinical phenotypes. RAS variants were associated with more aggressive phenotypes, generating preliminary data and hypothesis for future larger studies.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Vascular Malformations , Humans , Cohort Studies , Genetic Association Studies , Mitogen-Activated Protein Kinases/genetics , Mutation , Vascular Malformations/genetics
3.
J Cancer Res Clin Oncol ; 149(14): 13017-13026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466799

ABSTRACT

PURPOSE: The role of microRNA-146a (miR-146a) in defining the tumor immune microenvironment (TIME) is well established. The aim of this study was to evaluate circulating miR-146a as an early prognostic marker of 90Y-radioembolization (90Y-RE) in metastatic liver cancer and to assess the correlation between circulating miR-146a and TIME cellular composition in distant, yet untreated metastases. METHODS: Twenty-one patients with bilobar liver lesions from gastro-intestinal cancer underwent lobar 90Y-RE. Biopsy of contralateral lobe abscopal tumors was acquired at the onset of a second treatment session at a median of 21 days after initial RE, immediately prior to ablation therapy of the contralateral lobe tumor. miR-146a was measured by RT-qPCR in plasma collected 24 h before (T1) and 48 h after (T2) initial unilobar 90Y-RE. The level of miR-146a was correlated with the infiltration of CD4 + , CD8 + , FoxP3 T cells, CD163 + M2 macrophages and immune-exhausted T cells in the abscopal tumor tissue acquired before the second treatment session. RESULTS: Plasma samples collected at T2 showed a higher concentration of miR-146a with respect to T1 in 43% of the patients (p = 0.002). In these patients, tumors revealed a pro-tumorigenic immune composition with enrichment of Tim3 + immune exhausted cells (p = 0.021), in combination with a higher infiltration of CD163 + M2 macrophages and a lower infiltration of CD8 + T cells. Patients with a higher level of miR-146a after 90Y-RE showed a trend to shorter OS (p = 0.055). CONCLUSION: miR-146a may represent a novel prognostic biomarker for 90Y-radioembolization in metastatic liver cancer.

4.
J Cancer Res Clin Oncol ; 149(12): 9777-9786, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37247078

ABSTRACT

PURPOSE: Biomarkers are essential to implement personalized therapies in cancer treatment options. As primary liver tumors are increasing and treatment is coupled to liver function and activation of systemic cells of the immune system, we investigated blood-based cells for their ability to predict response to local ablative therapy. METHODS: We analyzed peripheral blood cells in 20 patients with primary liver cancer at baseline and following brachytherapy. In addition to platelets, leukocytes, lymphocytes, monocytes, neutrophils and most common ratios PLR, LMR, NMR and NLR, we investigated T cell and NKT cell populations of 11 responders and 9 non-responders using flow cytometry. RESULTS: We have found a peripheral blood cell signature that differed significantly between responders and non-responders treated with interstitial brachytherapy (IBT). At baseline, non-responders featured higher numbers of platelets, monocytes and neutrophils, a higher platelet-to-lymphocyte ratio and an increase in the NKT cell population with a concurrent reduction in CD16 + NKT cells. Simultaneously, a lower percentage of CD4 + T cells was present in non-responders, as also reflected in a lower CD4/8 ratio. CD45RO + memory cells were lower in both, CD4 + and CD8 + T cell populations whereas PD-1 + T cells were only present in the CD4 + T cell population. CONCLUSION: Baseline blood-based cell signature may function as a biomarker to predict response following brachytherapy in primary liver cancer.


Subject(s)
Brachytherapy , Liver Neoplasms , Humans , Lymphocytes , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Blood Cells , Liver Neoplasms/radiotherapy
5.
J Vasc Interv Radiol ; 34(9): 1528-1537.e1, 2023 09.
Article in English | MEDLINE | ID: mdl-36442741

ABSTRACT

PURPOSE: To perform radiofrequency (RF) ablation of hepatocellular carcinoma (HCC) and to assess serological and histopathological markers of tumorigenesis in distant untreated tumors to determine whether these were associated with unfavorable outcomes such as early relapse and increased biological aggressiveness. MATERIALS AND METHODS: The study cohort comprised 13 patients from a prospective single-arm study. All patients underwent 2 ablation sessions of multifocal HCC nodules 14 days apart. Core biopsy samples of untreated tumors were acquired at baseline and at the time of the second ablation session. Samples were stained immunohistochemically with Ki-67 (proliferation) and CD34 (microvasculature). Blood plasma was obtained at baseline and 2 days after the initial ablation session and analyzed for hepatocyte growth factor (HGF), vascular endothelial growth factor C, and angiopoietin-2 using an enzyme-linked immunosorbent assay. The clinical follow-up period ranged from 7 to 25 months. Patients were stratified as responders (complete remission or limited and delayed recurrence at >6 months; n = 6) or nonresponders (any recurrence within 6 months or >3 new tumors or any new tumor of >3 cm thereafter; n = 7). RESULTS: In 3 of 7 nonresponders, the Ki-67 index markedly increased in untreated tumors, whereas Ki-67 was stable in all responders. Microvascular density strongly increased in a single nonresponder only. HGF and angiopoietin-2 increased by >30% in 3 of 7 and 4 of 7 nonresponders, respectively, whereas they were stable or decreased in responders. Overall, ≥2 biomarkers were elevated in 6 of 7 (85.7%) nonresponders, whereas 4 of 6 responders demonstrated no increased biomarker and 2 patients demonstrated increase in 1 biomarker only (P = .002). CONCLUSIONS: RF ablation of HCC can produce protumorigenic factors that induce effects in distant untreated tumors. These may potentially function as biomarkers of clinical outcome.


Subject(s)
Carcinoma, Hepatocellular , Catheter Ablation , Liver Neoplasms , Radiofrequency Ablation , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/complications , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/complications , Angiopoietin-2 , Vascular Endothelial Growth Factor C , Prospective Studies , Ki-67 Antigen , Catheter Ablation/adverse effects , Radiofrequency Ablation/adverse effects , Treatment Outcome , Neoplasm Recurrence, Local/surgery
6.
Cardiovasc Intervent Radiol ; 46(1): 142-151, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36261507

ABSTRACT

PURPOSE: Arteriovenous malformations (AVMs) as rare diseases are diagnostically and therapeutically challenging. Due to the limited evidence regarding treatment outcome, prospective data are needed on how different treatment regimens affect outcome. The aims of this prospective trial are to determine effectiveness, safety, and clinical outcome of multimodal treatment in patients with extracranial AVMs. MATERIALS AND METHODS: After clinical and magnetic resonance imaging (MRI)-based diagnosis and informed consent, 146 patients (> 4 years and < 70 years) undergoing multimodal therapy in tertiary care vascular anomalies centers will be included in this prospective observational trial. Treatment options include conservative management, medical therapy, minimally invasive image-guided procedures (embolization, sclerotherapy) and surgery as well as combinations of the latter. The primary outcome is the patient-reported QoL 6 months after completion of treatment using the short form-36 health survey version 2 (SF-36v2) and the corresponding short form-10 health survey (SF-10) for children. In addition, clinical presentation (physician-reported signs), MRI imaging (radiological assessment of devascularization), recurrence rate, and therapeutic safety will be analyzed. Further follow-up will be performed after 12, 24, and 36 months. Moreover, liquid biopsies are being obtained from peripheral blood at multiple time points to investigate potential biomarkers for therapy response and disease progression. DISCUSSION: The APOLLON trial is a prospective, multicenter, observational open-label trial with unequal study groups to generate prospective evidence for multimodal treatment of AVMs. A multicenter design with the potential to assess larger populations will provide an increased understanding of multimodal therapy outcome in this orphan disease. TRIAL REGISTRATION: German Clinical Trials Register (identification number: DRKS00021019) https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00021019 .


Subject(s)
Intracranial Arteriovenous Malformations , Quality of Life , Child , Humans , Combined Modality Therapy , Intracranial Arteriovenous Malformations/diagnosis , Intracranial Arteriovenous Malformations/therapy , Multicenter Studies as Topic , Observational Studies as Topic , Prospective Studies , Treatment Outcome , Child, Preschool , Adolescent , Young Adult , Adult , Middle Aged , Aged
7.
Front Oncol ; 12: 959987, 2022.
Article in English | MEDLINE | ID: mdl-36353535

ABSTRACT

Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients' response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response.

8.
Front Oncol ; 12: 1000036, 2022.
Article in English | MEDLINE | ID: mdl-36408159

ABSTRACT

Objective: The objective of this study was to non-invasively differentiate the degree of malignancy in two murine breast cancer models based on identification of distinct tissue characteristics in a metastatic and non-metastatic tumor model using a multiparametric Magnetic Resonance Imaging (MRI) approach. Methods: The highly metastatic 4T1 breast cancer model was compared to the non-metastatic 67NR model. Imaging was conducted on a 9.4 T small animal MRI. The protocol was used to characterize tumors regarding their structural composition, including heterogeneity, intratumoral edema and hemorrhage, as well as endothelial permeability using apparent diffusion coefficient (ADC), T1/T2 mapping and dynamic contrast-enhanced (DCE) imaging. Mice were assessed on either day three, six or nine, with an i.v. injection of the albumin-binding contrast agent gadofosveset. Ex vivo validation of the results was performed with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), histology, immunhistochemistry and electron microscopy. Results: Significant differences in tumor composition were observed over time and between 4T1 and 67NR tumors. 4T1 tumors showed distorted blood vessels with a thin endothelial layer, resulting in a slower increase in signal intensity after injection of the contrast agent. Higher permeability was further reflected in higher Ktrans values, with consecutive retention of gadolinium in the tumor interstitium visible in MRI. 67NR tumors exhibited blood vessels with a thicker and more intact endothelial layer, resulting in higher peak enhancement, as well as higher maximum slope and area under the curve, but also a visible wash-out of the contrast agent and thus lower Ktrans values. A decreasing accumulation of gadolinium during tumor progression was also visible in both models in LA-ICP-MS. Tissue composition of 4T1 tumors was more heterogeneous, with intratumoral hemorrhage and necrosis and corresponding higher T1 and T2 relaxation times, while 67NR tumors mainly consisted of densely packed tumor cells. Histogram analysis of ADC showed higher values of mean ADC, histogram kurtosis, range and the 90th percentile (p90), as markers for the heterogenous structural composition of 4T1 tumors. Principal component analysis (PCA) discriminated well between the two tumor models. Conclusions: Multiparametric MRI as presented in this study enables for the estimation of malignant potential in the two studied tumor models via the assessment of certain tumor features over time.

9.
Article in German | MEDLINE | ID: mdl-35790166

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate whether X-ray dark-field (DF) radiography is useful for the diagnosis of gout in birds and reptiles and whether this preclinical model could be helpful to establish this non-invasive imaging method in human medicine. MATERIAL AND METHODS: A total of 18 limbs originating from 11 birds (7 different species) and 7 reptiles (4 different species) with and without suspected joint gout were measured using a grating-based X-ray dark-field setup and conventional X-ray examination, respectively. Each image acquisition generated a dark-field and a conventional absorption x-ray image. The results of the individual scans were compared with the results of a pathological examination and arthrocentesis. RESULTS: In 5 of the birds and 4 of the reptiles examined, gout was detected by pathologic examination. In each group, uric acid crystals were found in the joints of 3 animals by means of arthrocentesis. The uric acid crystals were detectable in 2 bird and 2 reptile limbs in the dark-field image. CONCLUSION: The study demonstrated that the urate crystals evoke a clearly visible dark field signal, whereas this was not the case in the conventional radiographs. CLINICAL RELEVANCE: The results obtained show that uric acid crystal detection using less invasive imaging methods in an animal model with birds and reptiles may expand gout diagnostics not only in veterinary medicine but also in human medicine and possibly replace arthrocentesis if a DF signal is detectable. Preclinical scanners which use X-ray dark-field and phase-contrast radiography already exist for hands and mammography.


Subject(s)
Animals, Exotic , Gout , Animals , Gout/diagnostic imaging , Gout/veterinary , Radiography , Uric Acid , X-Rays
10.
JACC Basic Transl Sci ; 6(11): 900-917, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34869956

ABSTRACT

The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.

11.
Cancers (Basel) ; 13(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771534

ABSTRACT

High-Z gold nanoparticles (AuNPs) conjugated to a targeting antibody can help to improve tumor control in radiotherapy while simultaneously minimizing radiotoxicity to adjacent healthy tissue. This paper summarizes the main findings of a joint research program which applied AuNP-conjugates in preclinical modeling of radiotherapy at the Klinikum rechts der Isar, Technical University of Munich and Helmholtz Zentrum München. A pharmacokinetic model of superparamagnetic iron oxide nanoparticles was developed in preparation for a model simulating the uptake and distribution of AuNPs in mice. Multi-scale Monte Carlo simulations were performed on a single AuNP and multiple AuNPs in tumor cells at cellular and molecular levels to determine enhancements in the radiation dose and generation of chemical radicals in close proximity to AuNPs. A biologically based mathematical model was developed to predict the biological response of AuNPs in radiation enhancement. Although simulations of a single AuNP demonstrated a clear dose enhancement, simulations relating to the generation of chemical radicals and the induction of DNA strand breaks induced by multiple AuNPs showed only a minor dose enhancement. The differences in the simulated enhancements at molecular and cellular levels indicate that further investigations are necessary to better understand the impact of the physical, chemical, and biological parameters in preclinical experimental settings prior to a translation of these AuNPs models into targeted cancer radiotherapy.

12.
Sci Rep ; 11(1): 19021, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561476

ABSTRACT

Gout is the most common form of inflammatory arthritis, caused by the deposition of monosodium urate (MSU) crystals in peripheral joints and tissue. Detection of MSU crystals is essential for definitive diagnosis, however the gold standard is an invasive process which is rarely utilized. In fact, most patients are diagnosed or even misdiagnosed based on manifested clinical signs, as indicated by the unchanged premature mortality among gout patients over the past decade, although effective treatment is now available. An alternative, non-invasive approach for the detection of MSU crystals is X-ray dark-field radiography. In our work, we demonstrate that dark-field X-ray radiography can detect naturally developed gout in animals with high diagnostic sensitivity and specificity based on the in situ measurement of MSU crystals. With the results of this study as a potential basis for further research, we believe that X-ray dark-field radiography has the potential to substantially improve gout diagnostics.


Subject(s)
Gout/diagnostic imaging , Gout/metabolism , Joints/diagnostic imaging , Joints/metabolism , Radiography/methods , Uric Acid/metabolism , Animals , Biomarkers/metabolism , Crystallization , Lizards , Panthera , Sensitivity and Specificity
13.
J Mol Med (Berl) ; 99(10): 1385-1398, 2021 10.
Article in English | MEDLINE | ID: mdl-34272967

ABSTRACT

Inflammation is the phenotypic form of various diseases. Recent development in molecular imaging provides new insights into the diagnostic and therapeutic evaluation of different inflammatory diseases as well as diseases involving inflammation such as cancer. While conventional imaging techniques used in the clinical setting provide only indirect measures of inflammation such as increased perfusion and altered endothelial permeability, optical imaging is able to report molecular information on diseased tissue and cells. Optical imaging is a quick, noninvasive, nonionizing, and easy-to-use diagnostic technology which has been successfully applied for preclinical research. Further development of optical imaging technology such as optoacoustic imaging overcomes the limitations of mere fluorescence imaging, thereby enabling pilot clinical applications in humans. By means of endogenous and exogenous contrast agents, sites of inflammation can be accurately visualized in vivo. This allows for early disease detection and specific disease characterization, enabling more rapid and targeted therapeutic interventions. In this review, we summarize currently available optical imaging techniques used to detect inflammation, including optical coherence tomography (OCT), bioluminescence, fluorescence, optoacoustics, and Raman spectroscopy. We discuss advantages and disadvantages of the different in vivo imaging applications with a special focus on targeting inflammation including immune cell tracking.


Subject(s)
Immunity/physiology , Inflammation/diagnostic imaging , Animals , Humans , Microscopy, Fluorescence/methods , Molecular Imaging/methods , Tomography, Optical Coherence/methods
14.
Biomedicines ; 9(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918295

ABSTRACT

Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.

15.
Chemistry ; 27(14): 4561-4566, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33300642

ABSTRACT

Conventional histology is a destructive technique based on the evaluation of 2D slices of a 3D biopsy. By using 3D X-ray histology these obstacles can be overcome, but their application is still restricted due to the inherently low attenuation properties of soft tissue. In order to solve this problem, the tissue can be stained before X-ray computed tomography imaging (CT) to enhance the soft tissue X-ray contrast. Evaluation of brominated fluorescein salts revealed a mutual influence of the number of bromine atoms and the cations applied on the achieved contrast enhancement. The dibromo fluorescein barium salt turned out to be the ideal X-ray contrast agent, allowing for 3D imaging and subsequent complementing counterstaining applying standard histological techniques.


Subject(s)
Contrast Media , Imaging, Three-Dimensional , Eosine Yellowish-(YS) , Sodium Chloride , X-Ray Microtomography
16.
Mol Imaging Biol ; 22(5): 1235-1243, 2020 10.
Article in English | MEDLINE | ID: mdl-32394284

ABSTRACT

PURPOSE: Myocardial healing following myocardial infarction (MI) is a complex process that is yet to be fully understood. Clinical attempts in regeneration of the injured myocardium using cardiac stem cells faced major challenges, calling for a better understanding of the processes involved at a more basic level in order to foster translation. PROCEDURES: We examined the feasibility of volumetric optoacoustic tomography (VOT) in studying healing of the myocardium in different models of MI, including permanent occlusion (PO) of the left coronary artery, temporary occlusion (ischemia-reperfusion-I/R) and infarcted c-kit mutants, a genetic mouse model with impaired cardiac healing. Murine hearts were imaged at 100 Hz frame rate using 800 nm excitation wavelength, corresponding to the peak absorption of indocyanine green (ICG) in plasma and the isosbestic point of haemoglobin. RESULTS: The non-invasive real-time volumetric imaging capabilities of VOT have allowed the detection of significant variations in the pulmonary transit time (PTT), a parameter affected by MI, across different murine models. Upon intravenous injection of ICG, we were able to track alterations in cardiac perfusion in I/R models, which were absent in wild-type (wt) PO or kitW/kitW-v PO mice. The wt-PO and I/R models further exhibited irregularities in their cardiac cycles. CONCLUSIONS: Clear differences in the PTT, ICG perfusion and cardiac cycle patterns were identified between the different models and days post MI. Overall, the results highlight the unique capacity of VOT for multi-parametric characterization of morphological and functional changes in murine models of MI.


Subject(s)
Heart/diagnostic imaging , Heart/physiopathology , Myocardium/pathology , Photoacoustic Techniques , Tomography , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/physiopathology , Disease Models, Animal , Indocyanine Green/chemistry , Mice, Inbred C57BL , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Myocardial Reperfusion
17.
Cancers (Basel) ; 12(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456049

ABSTRACT

Imaging techniques such as computed tomographies (CT) play a major role in clinical imaging and diagnosis of malignant lesions. In recent years, metal nanoparticle platforms enabled effective payload delivery for several imaging techniques. Due to the possibility of surface modification, metal nanoparticles are predestined to facilitate molecular tumor targeting. In this work, we demonstrate the feasibility of anti-plasma membrane Heat shock protein 70 (Hsp70) antibody functionalized gold nanoparticles (cmHsp70.1-AuNPs) for tumor-specific multimodal imaging. Membrane-associated Hsp70 is exclusively presented on the plasma membrane of malignant cells of multiple tumor entities but not on corresponding normal cells, predestining this target for a tumor-selective in vivo imaging. In vitro microscopic analysis revealed the presence of cmHsp70.1-AuNPs in the cytosol of tumor cell lines after internalization via the endo-lysosomal pathway. In preclinical models, the biodistribution as well as the intratumoral enrichment of AuNPs were examined 24 h after i.v. injection in tumor-bearing mice. In parallel to spectral CT analysis, histological analysis confirmed the presence of AuNPs within tumor cells. In contrast to control AuNPs, a significant enrichment of cmHsp70.1-AuNPs has been detected selectively inside tumor cells in different tumor mouse models. Furthermore, a machine-learning approach was developed to analyze AuNP accumulations in tumor tissues and organs. In summary, utilizing mHsp70 on tumor cells as a target for the guidance of cmHsp70.1-AuNPs facilitates an enrichment and uniform distribution of nanoparticles in mHsp70-expressing tumor cells that enables various microscopic imaging techniques and spectral-CT-based tumor delineation in vivo.

18.
Invest Radiol ; 55(8): 494-498, 2020 08.
Article in English | MEDLINE | ID: mdl-32251019

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the potential of x-ray dark-field radiography for the noninvasive detection of monosodium urate (MSU) crystals as a novel diagnostic tool for gout. MATERIALS AND METHODS: Contrast-to-noise ratios of MSU crystals in conventional radiography and dark-field radiography have been compared in a proof of principle measurement. Monosodium urate crystals have been injected into mouse legs in an ex vivo experimental gout setup. Three radiologists independently evaluated the images for the occurrence of crystal deposits in a blinded study for attenuation images only, dark-field images only, and with both images available for a comprehensive diagnosis. All imaging experiments have been performed at an experimental x-ray dark-field setup with a 3-grating interferometer, a rotating anode tube (50 kVp), and a photon-counting detector (effective pixel size, 166 µm). RESULTS: X-ray dark-field radiography provided a strong signal increase for MSU crystals in a physiological buffer solution compared with conventional attenuation radiography with a contrast-to-noise ratio increase from 0.8 to 19.3. Based on conventional attenuation images only, the reader study revealed insufficient diagnostic performance (sensitivity, 11%; specificity, 92%) with poor interrater agreement (Cohen's coefficient κ = 0.031). Based on dark-field images, the sensitivity increased to 100%, specificity remained at 92%, and the interrater agreement increased to κ = 0.904. Combined diagnosis based on both image modalities maximized both sensitivity and specificity to 100% with absolute interrater agreement (κ = 1.000). CONCLUSIONS: X-ray dark-field radiography enables the detection of MSU crystals in a mouse-based gout model. The simultaneous avaliability of a conventional attenuation image together with the dark-field image provides excellent detection rates of gout deposits with high specificity.


Subject(s)
Radiography , Uric Acid/metabolism , Animals , Disease Models, Animal , Gout/diagnostic imaging , Gout/metabolism , Humans , Mice , Photons , Sensitivity and Specificity
19.
Sci Rep ; 10(1): 4903, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184401

ABSTRACT

Most imaging studies of immunotherapy have focused on tracking labeled T cell biodistribution in vivo for understanding trafficking and homing parameters and predicting therapeutic efficacy by the presence of transferred T cells at or in the tumour mass. Conversely, we investigate here a novel concept for longitudinally elucidating anatomical and pathophysiological changes of solid tumours after adoptive T cell transfer in a preclinical set up, using previously unexplored in-tandem macroscopic and mesoscopic optoacoustic (photoacoustic) imaging. We show non-invasive in vivo observations of vessel collapse during tumour rejection across entire tumours and observe for the first time longitudinal tumour rejection in a label-free manner based on optical absorption changes in the tumour mass due to cellular decline. We complement these observations with high resolution episcopic fluorescence imaging of T cell biodistribution using optimized T cell labeling based on two near-infrared dyes targeting the cell membrane and the cytoplasm. We discuss how optoacoustic macroscopy and mesoscopy offer unique contrast and immunotherapy insights, allowing label-free and longitudinal observations of tumour therapy. The results demonstrate optoacoustic imaging as an invaluable tool in understanding and optimizing T cell therapy.


Subject(s)
Immunotherapy/methods , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tomography/methods , Animals , Cell Line , Chickens , Enzyme-Linked Immunosorbent Assay , Female , Humans , Mice , Photoacoustic Techniques/methods
20.
J Clin Pathol ; 73(8): 483-487, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31941652

ABSTRACT

AIMS: To correlate signal intensities in grating-based phase-contrast CT (PCCT) images obtained at a synchrotron light source and a conventional X-ray source with tissue components in human liver cirrhosis and hepatocellular carcinoma (HCC) specimen. METHODS: Study approval was obtained by the institutional review board. Human specimen of liver cirrhosis and HCC were imaged at experimental grating-based PCCT setups using either a synchrotron radiation source or a conventional X-ray tube. Tissue samples were sectioned and processed for H&E and Elastica van Gieson staining. PCCT and histological images were manually correlated. Depending on morphology and staining characteristics tissue components like fibrosis, HCC, inflammation, connective tissue and necrosis were differentiated and visually correlated with signal intensity in PCCT images using a 5-point Likert scale with normal liver parenchyma as a reference. RESULTS: Grating-based PCCT images of human cirrhotic liver and HCC specimen showed high soft-tissue contrast allowing correlation with histopathological sections. Signal intensities were similar in both setups independent of the nature of the radiation source. Connective tissue and areas of haemorrhage displayed the highest signal intensities, fibrotic liver tissue the lowest. CONCLUSIONS: Grating-based PCCT provides comparable results for the characterisation of human specimen of liver cirrhosis and HCC using either a synchrotron light source or a conventional X-ray tube. Due to its high soft-tissue contrast and its applicability to conventional X-ray tubes grating-based PCCT holds potential for preclinical research and virtual histology applications.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Early Detection of Cancer , Humans , Image Processing, Computer-Assisted/methods , Liver Cirrhosis/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Male , Middle Aged , Retrospective Studies , Synchrotrons , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...