Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
BMC Zool ; 9(1): 14, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951881

ABSTRACT

BACKGROUND: The wild boar (Sus scrofa) was extinct in Sweden when a few animals established in the 1970s. Over the past 35 years, the species has made a substantial comeback. In this paper, we analyse wild boar population growth using three indices of population size. We also map the legislative decisions and research prompted by the expanding population. We discuss to what extent, in the eyes of the state, the view of wild boar and the management focus has shifted over time, from a perceived pest (eradication) to scarce (conservation), overabundant (reduction/control) or somewhere in between (sustainable management). RESULTS: Wild boar harvest started in the early 1990s with a few hundred animals annually and peaked at 161,000 in 2020/2021. The distribution now comprises most of southern Sweden. Analyses of harvest and traffic accidents involving wild boar showed that the population grew exponentially until 2010/2011, after which the increase levelled off. Thus, logistic growth models showed the best fit for the full study period. We recorded 38 legislative decisions or commissions to government agencies regarding wild boar. The first decision in 1981 was to eradicate the free-ranging population. In 1987 however, the parliament decided that wild boar is native to Sweden and should be allowed in restricted extent. Later decisions mainly concerned hunting regulations and hunting methods as direct means to increase harvest and regulate the population. Another topic, increasing in importance over time, was to facilitate the use of wild boar meat to indirectly stimulate harvest. A local outbreak of African swine fever in 2023 necessitated a stamping out strategy in the affected area. We found 44 scientific papers regarding the present free-ranging population. Topics include movements and feeding patterns, hunting, reproduction, and population development. CONCLUSIONS: The state historically regarded wild boar as a pest to be eradicated. This changed with the decision that wild boar should be allowed in restricted extent, suggesting a conservation approach. In response to population growth, the focus shifted to means facilitating sustainable management and, lately, reducing growth. The story of wild boar in Sweden illustrates attempts to mitigate conflicts and balance interests in wildlife management.

2.
Ecol Evol ; 14(6): e11532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38882533

ABSTRACT

Harvest regulations commonly attenuate the consequences of hunting on specific segments of a population. However, regulations may not protect individuals from non-lethal effects of hunting and their consequences remain poorly understood. In this study, we compared the movement rates of Scandinavian brown bears (Ursus arctos, n = 47) across spatiotemporal variations in risk in relation to the onset of bear hunting. We tested two alternative hypotheses based on whether behavioural responses to hunting involve hiding or escaping. If bears try to reduce risk exposure by avoiding being detected by hunters, we expect individuals from all demographic groups to reduce their movement rate during the hunting season. On the other hand, if bears avoid hunters by escaping, we expect them to increase their movement rate in order to leave high-risk areas faster. We found an increased movement rate in females accompanied by dependent offspring during the morning hours of the bear hunting season, a general decrease in movement rate in adult lone females, and no changes in males and subadult females. The increased movement rate that we observed in females with dependant offspring during the hunting season was likely an antipredator response because it only occurred in areas located closer to roads, whereas the decreased movement rate in lone females could be either part of seasonal activity patterns or be associated with an increased selection for better concealment. Our study suggests that female brown bears accompanied by offspring likely move faster in high-risk areas to minimize risk exposure as well as the costly trade-offs (i.e. time spent foraging vs. time spent hiding) typically associated with anti-predator tactics that involve changes in resource selection. Our study also highlights the importance of modelling fine-scale spatiotemporal variations in risk to adequately capture the complexity in behavioural responses caused by human activities in wildlife.

3.
Ecol Evol ; 13(12): e10750, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089892

ABSTRACT

Although the advent of high-resolution GPS tracking technology has helped increase our understanding of individual and multispecies behavior in wildlife systems, detecting and recording direct interactions between free-ranging animals remains difficult. In 2023, we deployed GPS collars equipped with proximity sensors (GPS proximity collars) on brown bears (Ursus arctos) and moose (Alces alces) as part of a multispecies interaction study in central Sweden. On 6 June, 2023, a collar on an adult female moose and a collar on an adult male bear triggered each other's UHF signal and started collecting fine-scale GPS positioning data. The moose collar collected positions every 2 min for 89 min, and the bear collar collected positions every 1 min for 41 min. On 8 June, field personnel visited the site and found a female neonate moose carcass with clear indications of bear bite marks on the head and neck. During the predation event, the bear remained at the carcass while the moose moved back and forth, moving toward the carcass site about five times. The moose was observed via drone with two calves on 24 May and with only one remaining calf on 9 June. This case study describes, to the best of our knowledge, the first instance of a predation event between two free ranging, wild species recorded by GPS proximity collars. Both collars successfully triggered and switched to finer-scaled GPS fix rates when the individuals were in close proximity, producing detailed movement data for both predator and prey during and after a predation event. We suggest that, combined with standard field methodology, GPS proximity collars placed on free-ranging animals offer the ability for researchers to observe direct interactions between multiple individuals and species in the wild without the need for direct visual observation.

4.
PLoS One ; 18(9): e0291063, 2023.
Article in English | MEDLINE | ID: mdl-37669305

ABSTRACT

Brown bears (Ursus arctos) prepare for winter by overeating and increasing adipose stores, before hibernating for up to six months without eating, drinking, and with minimal movement. In spring, the bears exit the den without any damage to organs or physiology. Recent clinical research has shown that specific lipids and lipid profiles are of special interest for diseases such as diabetes type 1 and 2. Furthermore, rodent experiments show that lipids such as sulfatide protects rodents against diabetes. As free-ranging bears experience fat accumulation and month-long physical inactivity without developing diabetes, they could possibly be affected by similar protective measures. In this study, we investigated whether lipid profiles of brown bears are related to protection against hibernation-induced damage. We sampled plasma from 10 free-ranging Scandinavian brown bears during winter hibernation and repeated sampling during active state in the summer period. With quantitative shotgun lipidomics and liquid chromatography-mass spectrometry, we profiled 314 lipid species from 26 lipid classes. A principal component analysis revealed that active and hibernation samples could be distinguished from each other based on their lipid profiles. Six lipid classes were significantly altered when comparing plasma from active state and hibernation: Hexosylceramide, phosphatidylglycerol, and lysophosphatidylglycerol were higher during hibernation, while phosphatidylcholine ether, phosphatidylethanolamine ether, and phosphatidylinositol were lower. Additionally, sulfatide species with shorter chain lengths were lower, while longer chain length sulfatides were higher during hibernation. Lipids that are altered in bears are described by others as relevant for and associated with diabetes, which strengthens their position as potential effectors during hibernation. From this analysis, a range of lipids are suggested as potential protectors of bear physiology, and of potential importance in diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Ursidae , Animals , Sulfoglycosphingolipids , Adiposity , Ethers
5.
PLoS One ; 18(6): e0285782, 2023.
Article in English | MEDLINE | ID: mdl-37294822

ABSTRACT

Factors for initiating hibernation are unknown, but the condition shares some metabolic similarities with consciousness/sleep, which has been associated with n-3 fatty acids in humans. We investigated plasma phospholipid fatty acid profiles during hibernation and summer in free-ranging brown bears (Ursus arctos) and in captive garden dormice (Eliomys quercinus) contrasting in their hibernation patterns. The dormice received three different dietary fatty acid concentrations of linoleic acid (LA) (19%, 36% and 53%), with correspondingly decreased alpha-linolenic acid (ALA) (32%, 17% and 1.4%). Saturated and monounsaturated fatty acids showed small differences between summer and hibernation in both species. The dormice diet influenced n-6 fatty acids and eicosapentaenoic acid (EPA) concentrations in plasma phospholipids. Consistent differences between summer and hibernation in bears and dormice were decreased ALA and EPA and marked increase of n-3 docosapentaenoic acid and a minor increase of docosahexaenoic acid in parallel with several hundred percent increase of the activity index of elongase ELOVL2 transforming C20-22 fatty acids. The highest LA supply was unexpectantly associated with the highest transformation of the n-3 fatty acids. Similar fatty acid patterns in two contrasting hibernating species indicates a link to the hibernation phenotype and requires further studies in relation to consciousness and metabolism.


Subject(s)
Fatty Acids, Omega-3 , Myoxidae , Ursidae , Animals , alpha-Linolenic Acid , Eicosapentaenoic Acid/metabolism , Fatty Acids/metabolism , Linoleic Acid , Myoxidae/metabolism , Phospholipids/metabolism , Ursidae/metabolism , Hibernation/physiology
6.
Science ; 380(6641): 178-187, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37053338

ABSTRACT

Venous thromboembolism (VTE) comprising deep venous thrombosis and pulmonary embolism is a major cause of morbidity and mortality. Short-term immobility-related conditions are a major risk factor for the development of VTE. Paradoxically, long-term immobilized free-ranging hibernating brown bears and paralyzed spinal cord injury (SCI) patients are protected from VTE. We aimed to identify mechanisms of immobility-associated VTE protection in a cross-species approach. Mass spectrometry-based proteomics revealed an antithrombotic signature in platelets of hibernating brown bears with heat shock protein 47 (HSP47) as the most substantially reduced protein. HSP47 down-regulation or ablation attenuated immune cell activation and neutrophil extracellular trap formation, contributing to thromboprotection in bears, SCI patients, and mice. This cross-species conserved platelet signature may give rise to antithrombotic therapeutics and prognostic markers beyond immobility-associated VTE.


Subject(s)
Blood Platelets , HSP47 Heat-Shock Proteins , Hypokinesia , Spinal Cord Injuries , Ursidae , Venous Thromboembolism , Animals , Humans , Mice , Fibrinolytic Agents/therapeutic use , Pulmonary Embolism/drug therapy , Pulmonary Embolism/ethnology , Pulmonary Embolism/metabolism , Risk Factors , Spinal Cord Injuries/complications , Ursidae/metabolism , Venous Thromboembolism/etiology , Venous Thromboembolism/metabolism , Hypokinesia/complications , HSP47 Heat-Shock Proteins/metabolism , Blood Platelets/metabolism
7.
Ecol Appl ; 33(4): e2840, 2023 06.
Article in English | MEDLINE | ID: mdl-36912774

ABSTRACT

Hunters can affect the behavior of wildlife by inducing a landscape of fear, selecting individuals with specific traits, or altering resource availability across the landscape. Most research investigating the influence of hunting on wildlife resource selection has focused on target species and less attention has been devoted to nontarget species, such as scavengers that can be both attracted or repelled by hunting activities. We used resource selection functions to identify areas where hunters were most likely to kill moose (Alces alces) in south-central Sweden during the fall. Then, we used step-selection functions to determine whether female brown bears (Ursus arctos) selected or avoided these areas and specific resources during the moose hunting season. We found that, during both day and nighttime, female brown bears avoided areas where hunters were more likely to kill moose. We found evidence that resource selection by brown bears varied substantially during the fall and that some behavioral changes were consistent with disturbance associated with moose hunters. Brown bears were more likely to select concealed locations in young (i.e., regenerating) and coniferous forests and areas further away from roads during the moose hunting season. Our results suggest that brown bears react to both spatial and temporal variations in apparent risk during the fall: moose hunters create a landscape of fear and trigger an antipredator response in a large carnivore even if bears are not specifically targeted during the moose hunting season. Such antipredator responses might lead to indirect habitat loss and lower foraging efficiency and the resulting consequences should be considered when planning hunting seasons.


Subject(s)
Ursidae , Animals , Female , Ursidae/physiology , Hunting , Animals, Wild , Ecosystem , Fear
8.
Thyroid Res ; 16(1): 3, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36721203

ABSTRACT

Brown bears hibernate throughout half of the year as a survival strategy to reduce energy consumption during prolonged periods with scarcity of food and water. Thyroid hormones are the major endocrine regulators of basal metabolic rate in humans. Therefore, we aimed to determine regulations in serum thyroid hormone levels in hibernation compared to the active state to investigate if these are involved in the adaptions for hibernation.We used electrochemiluminescence immunoassay to quantify total triiodothyronine (T3) and thyroxine (T4) levels in hibernation and active state in paired serum samples from six subadult Scandinavian brown bears. Additionally, we determined regulations in the liver mRNA levels of three major thyroid hormone-binding proteins; thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin, by analysis of previously published grizzly bear RNA sequencing data.We found that bears were hypothyroid when hibernating with T4 levels reduced to less than 44% (P = 0.008) and T3 levels reduced to less than 36% (P = 0.016) of those measured in the active state. In hibernation, mRNA levels of TBG and albumin increased to 449% (P = 0.031) and 121% (P = 0.031), respectively, of those measured in the active state. TTR mRNA levels did not change.Hibernating bears are hypothyroid and share physiologic features with hypothyroid humans, including decreased basal metabolic rate, bradycardia, hypothermia, and fatigue. We speculate that decreased thyroid hormone signaling is a key mediator of hibernation physiology in bears. Our findings shed light on the translational potential of bear hibernation physiology to humans for whom a similar hypometabolic state could be of interest in specific conditions.

9.
Sci Total Environ ; 873: 162099, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36764533

ABSTRACT

Lead (Pb) is heterogeneously distributed in the environment and multiple sources like Pb ammunition and fossil fuel combustion can increase the risk of exposure in wildlife. Brown bears (Ursus arctos) in Sweden have higher blood Pb levels compared to bears from other populations, but the sources and routes of exposure are unknown. The objective of this study was to quantify the contribution of two potential sources of Pb exposure in female brown bears (n = 34 individuals; n = 61 samples). We used multiple linear regressions to determine the contribution of both environmental Pb levels estimated from plant roots and moose (Alces alces) kills to blood Pb concentrations in female brown bears. We found positive relationships between blood Pb concentrations in bears and both the distribution of moose kills by hunters and environmental Pb levels around capture locations. Our results suggest that the consumption of slaughter remains discarded by moose hunters is a likely significant pathway of Pb exposure and this exposure is additive to environmental Pb exposure in female brown bears in Sweden. We suggest that spatially explicit models, incorporating habitat selection analyses of harvest data, may prove useful in predicting Pb exposure in scavengers.


Subject(s)
Deer , Ursidae , Animals , Lead , Animals, Wild , Ecosystem , Sweden
10.
Anim Welf ; 32: e75, 2023.
Article in English | MEDLINE | ID: mdl-38510989

ABSTRACT

Animal models are a key component of translational medicine, helping transfer scientific findings into practical applications for human health. A fundamental principle of research ethics involves weighing the benefits of the research to society against the burden imposed on the animals used for scientific purposes. The utilisation of wild animals for research requires evaluation of the effects of capture and invasive sampling. Determining the severity and duration of these interventions on the animal's physiology and behaviour allows for refining study methodology and for excluding or accounting for biased data. In this study, 39 Scandinavian brown bears (Ursus arctos) captured either while hibernating in winter or via helicopter in summer and that underwent surgery as part of a human health project had their movement, body temperature and timing of onset of hibernation compared with those of 14 control bears that had not been captured during the same period. Bears captured in winter and summer showed decreased movement from den exit until late summer, compared to those in the control group. Bears captured in summer showed reduced movement and body temperature for at least, respectively, 14 and 3 days, with an 11% decrease in hourly distance, compared to pre-capture levels, but did not differ in the timing of hibernation onset. We reveal that brown bear behaviour and physiology can be altered in response to capture and surgery for days to months, post-capture. This has broad implications for the conclusions of wildlife studies that rely upon invasive sampling.

11.
Am J Physiol Endocrinol Metab ; 323(3): E307-E318, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35830688

ABSTRACT

Brown bears conserve muscle and bone mass during 6 mo of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of insulin-like growth factors (IGFs). In subadult Scandinavian brown bears, we observed that mean plasma IGF-1 and IGF-2 levels during hibernation were reduced to 36 ± 10% and 56 ± 15%, respectively, compared with the active state (n = 12). Western ligand blotting identified IGF-binding protein (IGFBP)-3 as the major IGFBP in the active state, whereas IGFBP-2 was codominant during hibernation. Acid labile subunit (ALS) levels in hibernation were reduced to 41±16% compared with the active state (n = 6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS levels were significantly reduced during hibernation (n = 6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, size-exclusion chromatography of bear plasma demonstrated a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Furthermore, we note that the major IGF-2 mRNA isoform expressed in livers in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 is replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modeling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin-binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.NEW & NOTEWORTHY Brown bears shift from circulating ternary IGF/IGFBP/ALS complexes in the active state to binary IGF/IGFBP complexes during hibernation, indicating increased tissue IGF-bioactivity. Furthermore, brown bears use a splice variant of IGF-2, suggesting increased bone-specific targeting of IGF anabolic signaling.


Subject(s)
Insulin-Like Growth Factor Binding Proteins , Insulin-Like Growth Factor I , Ursidae , Animals , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/metabolism , Ursidae/metabolism
12.
Physiol Biochem Zool ; 95(5): 365-378, 2022.
Article in English | MEDLINE | ID: mdl-35839518

ABSTRACT

Brown bears are obese when they enter the den, and after 6 mo of hibernation and physical inactivity, bears show none of the adverse consequences of a sedentary lifestyle in humans, such as cardiovascular disease, type 2 diabetes, and kidney failure. The metabolic mechanisms that drive hibernation physiology in bears are poorly defined, but systemic endocrine regulators are likely involved. To investigate the potential role of steroid hormones, we quantified the total levels of 12 steroid hormones, the precursor cholesterol, sex hormone-binding globulin (SHBG), and corticosterone-binding globulin (CBG) in paired serum samples from subadult free-ranging Scandinavian brown bears during the active and hibernation states. During hibernation, androstenedione and testosterone were significantly decreased in subadult female bears (n=13), whereas they increased in all males but one (n=6) and therefore did not reach a significant difference. Despite this difference, SHBG increased more than 20-fold during hibernation for all bears. Compared with SHBG concentrations in humans, bear levels were very low in the active state, but during hibernation, levels equaled high levels in humans. The increased SHBG levels likely maintain a state of relative quiescence of the reproductive hormones in hibernating bears. Interestingly, the combination of SHBG and testosterone levels results in similar free bioavailable testosterone levels of 70-80 pM in both subadult and adult sexually active male bears, suggesting a role for SHBG in controlling androgen action during hibernation in males. Dehydroepiandrosterone sulfate, dihydrotestosterone, and estradiol levels were below the detection limit in all but one animal. The metabolically active glucocorticoids were significantly higher in both sexes during hibernation, whereas the inactive metabolite cortisone was reduced and CBG was low approaching the detection limit. A potential caveat is that the glucocorticoid levels might be affected by the ketamine applied in the anesthetic mixture for hibernating bears. However, increased hibernating cortisol levels have consistently been reported in both black bears and brown bears. Thus, we suggest that high glucocorticoid activity may support the hibernation state, likely serving to promote lipolysis and gluconeogenesis while limiting tissue glucose uptake to maintain a continuous glucose supply to the brain.


Subject(s)
Diabetes Mellitus, Type 2 , Ursidae , Animals , Female , Humans , Male , Androgens , Glucocorticoids , Testosterone , Ursidae/physiology
13.
Data Brief ; 41: 107959, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35242939

ABSTRACT

In this article, we present mass-spectrometry based plasma proteomics data from hibernating and active free-ranging Scandinavian brown bears (Ursus arctos). The brown bear hibernates for half the year. Despite obesity when entering the den and the prolonged period of inactivity, the bear shows no signs of the harmful effects associated with these conditions in humans. Thus, the hibernating bear is a potential translational model for addressing these complications in humans. We analyzed plasma samples from fourteen 2- to 3-year-old bears (6 males and 8 females) collected both during hibernation and the active state, and for some of the bears during two seasons, resulting in a total of 38 analyzed plasma samples. In triplicates, the plasma proteins were unfolded and reduced. To increase the chance of detecting low-molecular-weight proteins and peptides, we filtered the samples using a 50 K molecular weight cut-off filter with the aim to deplete larger abundant proteins, including albumin, and thereby increase the depth of the analysis. The proteins in the permeate were then tryptically digested, desalted, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein identification and quantification was performed with the MaxQuant software searching against an Ursus arctos horribilis protein database. Here, we provide the raw data, a list with identified proteins in the plasma samples, and the databases applied for protein identification. Based on the provided data, differentially expressed proteins in hibernation compared to active state can be identified. These proteins may be involved in the bears' adaptions to hibernation physiology and hold potential as novel therapeutic targets.

14.
Environ Pollut ; 287: 117595, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34426381

ABSTRACT

Exposure to lead (Pb) is a global health problem for both humans and wildlife. Despite a dramatic decline in human Pb exposure following restrictions of leaded gasoline and industry and thereby an overall reduction of Pb entering the environment, Pb exposure continues to be a problem for wildlife species. Literature on scavenging terrestrial mammals, including interactions between Pb exposure and life history, is however limited. We quantified Pb concentration in 153 blood samples from 110 free-ranging Scandinavian brown bears (Ursus arctos), 1-25 years old, using inductively coupled plasma sector field mass spectrometry. We used generalized linear models to test effects of age, body mass, reproduction status and spatial distribution on the blood Pb concentrations of 56 female bears. We sampled 28 females together with 56 dependent cubs and paired their blood Pb concentrations. From 20 lactating females, we measured the Pb concentration in milk. The mean blood Pb concentration was 96.6 µg/L (range: 38.7-220.5 µg/L). Both the mean and range are well above established threshold concentrations for developmental neurotoxicity (12 µg/L), increased systolic blood pressure (36 µg/L) and prevalence of kidney disease in humans (15 µg/L). Lactating females had higher Pb blood concentrations compared to younger, non-lactating females. Blood Pb concentrations of dependent cubs were correlated with their mother's blood Pb concentration, which in turn was correlated with the Pb concentration in the milk. Life-long Pb exposure in Scandinavian brown bears may have adverse effects both on individual and population levels. The high blood Pb concentrations found in brown bears contrast the general reduction in environmental Pb contamination over the past decades in Scandinavia and more research is needed to identify the sources and pathways of Pb exposure in the brown bears.


Subject(s)
Ursidae , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Humans , Infant , Lactation , Lead , Milk , Scandinavian and Nordic Countries , Young Adult
15.
Sci Rep ; 11(1): 12120, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108551

ABSTRACT

Brown bears (Ursus arctos) hibernate for 5-6 months during winter, but despite kidney insufficiency, dyslipidemia and inactivity they do not seem to develop atherosclerosis or cardiovascular disease (CVD). IgM antibodies against phosphorylcholine (anti-PC) and malondialdehyde (anti-MDA) are associated with less atherosclerosis, CVD and mortality in uremia in humans and have anti-inflammatory and other potentially protective properties. PC but not MDA is exposed on different types of microorganisms. We determine anti-PC and anti-MDA in brown bears in summer and winter. Paired serum samples from 12 free ranging Swedish brown bears were collected during hibernation in winter and during active state in summer and analyzed for IgM, IgG, IgG1/2 and IgA anti-PC and anti-MDA by enzyme linked immunosorbent assay (ELISA). When determined as arbitrary units (median set at 100 for summer samples), significantly raised levels were observed in winter for anti-PC subclasses and isotypes, and for IgA anti-PC the difference was striking; 100 IQR (85.9-107.9) vs 782.3, IQR (422.8-1586.0; p < 0.001). In contrast, subclasses and isotypes of anti-MDA were significantly lower in winter except IgA anti-MDA, which was not detectable. Anti-PCs are significantly raised during hibernation in brown bears; especially IgA anti-PC was strikingly high. In contrast, anti-MDA titers was decreased during hibernation. Our observation may represent natural immunization with microorganisms during a vulnerable period and could have therapeutic implications for prevention of atherosclerosis.


Subject(s)
Antibodies, Antiphospholipid/immunology , Atherosclerosis/immunology , Immunity, Innate/immunology , Immunoglobulin M/immunology , Malondialdehyde/immunology , Phosphorylcholine/immunology , Ursidae/immunology , Animals , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Hibernation , Seasons , Sweden
16.
J Lipid Res ; 62: 100065, 2021.
Article in English | MEDLINE | ID: mdl-33713671

ABSTRACT

Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated. The data collected and analyzed from bears were also compared with those from healthy humans. In bears, the cholesterol ester, unesterified cholesterol, TG, and phospholipid contents of VLDL and LDL were higher in winter than in summer. The percentage lipid composition of LDL differed between bears and humans but did not change seasonally in bears. Bear LDL was larger, richer in TGs, showed prebeta electrophoretic mobility, and had 5-10 times lower binding to arterial PGs than human LDL. Finally, plasma CEC was higher in bears than in humans, especially the HDL fraction when mediated by ABCA1. These results suggest that in brown bears the absence of early atherogenesis is likely associated with a lower affinity of LDL for arterial PGs and an elevated CEC of bear plasma.


Subject(s)
Hibernation , Lipoproteins , Ursidae , Animals , Cholesterol/blood , Lipoproteins/blood , Seasons , Ursidae/physiology
17.
Proc Natl Acad Sci U S A ; 117(48): 30531-30538, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199605

ABSTRACT

The ongoing recovery of terrestrial large carnivores in North America and Europe is accompanied by intense controversy. On the one hand, reestablishment of large carnivores entails a recovery of their most important ecological role, predation. On the other hand, societies are struggling to relearn how to live with apex predators that kill livestock, compete for game species, and occasionally injure or kill people. Those responsible for managing these species and mitigating conflict often lack fundamental information due to a long-standing challenge in ecology: How do we draw robust population-level inferences for elusive animals spread over immense areas? Here we showcase the application of an effective tool for spatially explicit tracking and forecasting of wildlife population dynamics at scales that are relevant to management and conservation. We analyzed the world's largest dataset on carnivores comprising more than 35,000 noninvasively obtained DNA samples from over 6,000 individual brown bears (Ursus arctos), gray wolves (Canis lupus), and wolverines (Gulo gulo). Our analyses took into account that not all individuals are detected and, even if detected, their fates are not always known. We show unequivocal quantitative evidence of large carnivore recovery in northern Europe, juxtaposed with the finding that humans are the single-most important factor driving the dynamics of these apex predators. We present maps and forecasts of the spatiotemporal dynamics of large carnivore populations, transcending national boundaries and management regimes.


Subject(s)
Genetics, Population , Population Dynamics , Predatory Behavior , Algorithms , Animals , Animals, Wild , Geography , Models, Theoretical , Spatial Analysis
18.
Sci Rep ; 10(1): 9941, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555291

ABSTRACT

Habitat selection of animals depends on factors such as food availability, landscape features, and intra- and interspecific interactions. Individuals can show several behavioral responses to reduce competition for habitat, yet the mechanisms that drive them are poorly understood. This is particularly true for large carnivores, whose fine-scale monitoring is logistically complex and expensive. In Scandinavia, the home-range establishment and kill rates of gray wolves (Canis lupus) are affected by the coexistence with brown bears (Ursus arctos). Here, we applied resource selection functions and a multivariate approach to compare wolf habitat selection within home ranges of wolves that were either sympatric or allopatric with bears. Wolves selected for lower altitudes in winter, particularly in the area where bears and wolves are sympatric, where altitude is generally higher than where they are allopatric. Wolves may follow the winter migration of their staple prey, moose (Alces alces), to lower altitudes. Otherwise, we did not find any effect of bear presence on wolf habitat selection, in contrast with our previous studies. Our new results indicate that the manifestation of a specific driver of habitat selection, namely interspecific competition, can vary at different spatial-temporal scales. This is important to understand the structure of ecological communities and the varying mechanisms underlying interspecific interactions.


Subject(s)
Ecosystem , Predatory Behavior , Seasons , Sympatry , Ursidae/physiology , Wolves/physiology , Animals , Geography , Scandinavian and Nordic Countries
19.
Sci Rep ; 10(1): 247, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937799

ABSTRACT

During six months of annual hibernation, the brown bear undergoes unique physiological changes to adapt to decreased metabolic rate. We compared cardiac structural and functional measures of hibernating and active bears using comprehensive echocardiography. We performed echocardiography on 13 subadult free-ranging, anaesthetised Scandinavian brown bears (Ursus arctos) during late hibernation and in early summer. Mean heart rate was 26 beats per minute (standard deviation (SD): 8) during hibernation vs 71 (SD: 14) during active state. All left ventricular (LV) systolic and diastolic measures were decreased during hibernation: mean ejection fraction: 44.2% (SD: 6.0) active state vs 34.0 (SD: 8.1) hibernation, P = 0.001; global longitudinal strain: -11.2% (SD: 2.0) vs -8.8 (SD: 3.3), P = 0.03; global longitudinal strain rate: -0.82 (SD: 0.15) vs -0.41 (SD: 0.18), P < 0.001; septal e': 9.8 cm/s (SD: 1.8) vs 5.2 (SD: 2.7), P < 0.001. In general, measures of total myocardial motion (ejection fraction and global longitudinal strain) were decreased to a lesser extent than measures of myocardial velocities. In the hibernating brown bear, cardiac adaptation included decreased functional measures, primarily measures of myocardial velocities, but was not associated with cardiac atrophy. Understanding the mechanisms of these adaptations could provide pathophysiological insight of human pathological conditions such as heart failure.


Subject(s)
Adaptation, Physiological , Heart/physiology , Hibernation/physiology , Ursidae/physiology , Animals , Electrocardiography
20.
PLoS One ; 15(1): e0225990, 2020.
Article in English | MEDLINE | ID: mdl-31929559

ABSTRACT

The physiological effects of short-term stress responses typically lead to increased individual survival as it prepares the body for fight or flight through catabolic reactions in the body. These physiological effects trade off against growth, immunocompetence, reproduction, and even long-term survival. Chronic stress may thus reduce individual and population performance, with direct implications for the management and conservation of wildlife populations. Yet, relatively little is known about how chronic stress levels vary across wild populations and factors contributing to increased chronic stress levels. One method to measure long-term stress in mammals is to quantify slowly incorporated stress hormone (cortisol) in hair, which most likely reflect a long-term average of the stress responses. In this study, we sampled 237 harvested moose Alces alces across Sweden to determine the relative effect of landscape variables and disturbances on moose hair cortisol levels. We used linear model combinations and Akaike's Information Criterion (corrected for small sample sizes), and included variables related to human disturbance, ungulate competition, large carnivore density, and ambient temperature to estimate the covariates that best explained the variance in stress levels in moose. The most important variables explaining the variation in hair cortisol levels in moose were the long-term average temperature sum in the area moose lived and the distance to occupied wolf territory; higher hair cortisol levels were detected where temperatures were higher and closer to occupied wolf territories, respectively.


Subject(s)
Deer/physiology , Stress, Physiological , Stress, Psychological , Animals , Female , Hair/metabolism , Hydrocortisone/metabolism , Male , Population Density , Predatory Behavior , Seasons , Sweden , Temperature , Wolves/physiology
SELECTION OF CITATIONS
SEARCH DETAIL