Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mach Learn Appl ; 162024 Jun.
Article in English | MEDLINE | ID: mdl-39036499

ABSTRACT

Infrared (IR) spectroscopic imaging is of potentially wide use in medical imaging applications due to its ability to capture both chemical and spatial information. This complexity of the data both necessitates using machine intelligence as well as presents an opportunity to harness a high-dimensionality data set that offers far more information than today's manually-interpreted images. While convolutional neural networks (CNNs), including the well-known U-Net model, have demonstrated impressive performance in image segmentation, the inherent locality of convolution limits the effectiveness of these models for encoding IR data, resulting in suboptimal performance. In this work, we propose an INfrared Spectroscopic imaging-based TRAnsformers for medical image Segmentation (INSTRAS). This novel model leverages the strength of the transformer encoders to segment IR breast images effectively. Incorporating skip-connection and transformer encoders, INSTRAS overcomes the issue of pure convolution models, such as the difficulty of capturing long-range dependencies. To evaluate the performance of our model and existing convolutional models, we conducted training on various encoder-decoder models using a breast dataset of IR images. INSTRAS, utilizing 9 spectral bands for segmentation, achieved a remarkable AUC score of 0.9788, underscoring its superior capabilities compared to purely convolutional models. These experimental results attest to INSTRAS's advanced and improved segmentation abilities for IR imaging.

3.
Sci Data ; 9(1): 31, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35165298

ABSTRACT

To enable the reusability of massive scientific datasets by humans and machines, researchers aim to adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step assessment guide to evaluate whether or not a given dataset meets these principles. We demonstrate how to use this guide to evaluate the FAIRness of an open simulated dataset produced by the CMS Collaboration at the CERN Large Hadron Collider. This dataset consists of Higgs boson decays and quark and gluon background, and is available through the CERN Open Data Portal. We use additional available tools to assess the FAIRness of this dataset, and incorporate feedback from members of the FAIR community to validate our results. This article is accompanied by a Jupyter notebook to visualize and explore this dataset. This study marks the first in a planned series of articles that will guide scientists in the creation of FAIR AI models and datasets in high energy particle physics.

4.
Comput Sci Eng ; 22(5): 108-112, 2020 Sep.
Article in English | MEDLINE | ID: mdl-35939278
SELECTION OF CITATIONS
SEARCH DETAIL