Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36566464

ABSTRACT

Mitochondrial DNA copy number (mtDNA CN) is heritable and easily obtained from low-pass sequencing (LPS). This study investigated the genetic correlation of mtDNA CN with growth and carcass traits in a multi-breed and crossbred beef cattle population. Blood, leucocyte, and semen samples were obtained from 2,371 animals and subjected to LPS that resulted in nuclear DNA (nuDNA) and mtDNA sequence reads. Mitochondrial DNA CN was estimated as the ratio of mtDNA to nuDNA coverages. Variant calling was performed from mtDNA, and 11 single nucleotide polymorphisms (SNP) were identified in the population. Samples were classified in taurine haplogroups. Haplogroup and mtDNA type were further classified based on the 11 segregating SNP. Growth and carcass traits were available for between 7,249 and 60,989 individuals. Associations of mtDNA CN, mtDNA haplogroups, mtDNA types, and mtDNA SNP with growth and carcass traits were estimated with univariate animal models, and genetic correlations were estimated with a bivariate animal model based on pedigree. Mitochondrial DNA CN tended (P-value ≤0.08) to be associated with birth weight and weaning weight. There was no association (P-value >0.10) between mtDNA SNP, haplogroups, or types with growth and carcass traits. Genetic correlation estimates of mtDNA CN were -0.30 ± 0.16 with birth weight, -0.31 ± 0.16 with weaning weight, -0.15 ± 0.14 with post-weaning gain, -0.11 ± 0.19 with average daily dry-matter intake, -0.04 ± 0.22 with average daily gain, -0.29 ± 0.13 with mature cow weight, -0.11 ± 0.13 with slaughter weight, -0.14 ± 0.13 with carcass weight, -0.07 ± 0.14 with carcass backfat, 0.14 ± 0.14 with carcass marbling, and -0.06 ± 0.14 with ribeye area. In conclusion, mtDNA CN was negatively correlated with most traits investigated, and the genetic correlation was stronger with growth traits than with carcass traits.


This study investigated mitochondrial DNA copy number (mtDNA CN) as a potential genetic indicator of growth and carcass traits in a composite beef cattle population. Mitochondrial DNA CN was previously shown to be under genetic control. The current study estimated the genetic relationship of mtDNA CN with growth and carcass traits. Blood, leucocyte, and semen samples were obtained from 2,371 animals and subjected to whole-genome sequencing at a low depth that resulted in nuclear DNA and mtDNA sequence reads. Mitochondrial DNA CN was estimated as the ratio of mtDNA to nuclear DNA coverages. Growth and carcass traits were available for between 7,249 and 60,989 individuals. Genetic parameters were estimated from an animal model based on pedigree. Genetic correlation estimates of mtDNA CN with growth and carcass traits were low to moderate and mostly negative. These indicate that selection for lower mtDNA would be associated with an increase in birth weight, weaning weight, post-weaning gain, average daily dry-matter intake, mature cow weight, slaughter weight, and carcass weight. Therefore, the by-product of whole-genome sequencing at a low depth could be used as an indicator trait for growth and carcass traits in genetic evaluations, but the genetic relationships are not likely strong enough to prioritize mtDNA ahead of routinely used indicator traits.


Subject(s)
DNA, Mitochondrial , Meat , Female , Cattle/genetics , Animals , DNA, Mitochondrial/genetics , Meat/analysis , Polymorphism, Single Nucleotide , Birth Weight , DNA Copy Number Variations/genetics , Lipopolysaccharides , Phenotype
2.
Foods ; 11(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35885384

ABSTRACT

Consumer interest in grass-fed beef has been steadily rising due to consumer perception of its potential benefits. This interest has led to a growing demand for niche market beef, particularly in the western United States. Therefore, the objective of this study was to assess the impact of feeding systems on the change in microbial counts, color, and lipid oxidation of steaks during retail display, and on their sensory attributes. The systems included: conventional grain-fed (CON), 20 months-grass-fed (20GF), 25-months-grass-fed (25GF) and 20-months-grass-fed + 45-day-grain-fed (45GR). The results indicate that steaks in the 20GF group displayed a darker lean and fat color, and a lower oxidation state than those in the 25GF group. However, the feeding system did not have an impact on pH or objective tenderness of beef steaks. In addition, consumers and trained panelist did not detect a difference in taste or flavor between the 20GF or 25GF steaks but expressed a preference for the CON and 45GR steaks, indicating that an increased grazing period may improve the color and oxidative stability of beef, while a short supplementation with grain may improve eating quality.

3.
Sci Rep ; 9(1): 5721, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952873

ABSTRACT

Ambient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes. Eight different machine learning algorithms were compared to generate predictive models using REIMS data to classify beef quality attributes based on the United States Department of Agriculture (USDA) quality grade, production background, breed type and muscle tenderness. The results revealed that the optimal machine learning algorithm, as assessed by predictive accuracy, was different depending on the classification problem, suggesting that a "one size fits all" approach to developing predictive models from REIMS data is not appropriate. The highest performing models for each classification achieved prediction accuracies between 81.5-99%, indicating the potential of the approach to complement current methods for classifying quality attributes in beef.


Subject(s)
Food Analysis/methods , Red Meat , Algorithms , Machine Learning , Mass Spectrometry , United States
4.
Meat Sci ; 116: 165-73, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26890392

ABSTRACT

Beef carcasses exhibiting four levels of dark cutting severity (DCS): Severe, Moderate, Mild, and Shady were compared to Control carcasses to investigate biochemical traits contributing to the dark cutting condition. Color attributes of Longissimus lumborum (LL) were measured after grading and during simulated retail display. Mitochondrial abundance and efficiency, bloomed oxymyoglobin, reducing ability, glycolytic potential, myoglobin concentration, and protein solubility and oxidation were determined. Glycolytic potential and lactate concentrations decreased (P<0.05) as DCS increased. Residual glycogen was greater (P<0.05) in steaks from Control carcasses compared to DCS classes. Generally, as DCS increased, LL steaks were darker and less red in color (P<0.05). Increased (P<0.05) oxygen consumption and reducing ability coincided with greater myoglobin concentration and greater abundance of less efficient mitochondria as DCS increased (P<0.05). These data suggest the dark cutting condition is associated with greater oxidative metabolism coupled with less efficient mitochondria resulting in depletion of glycogen during stress.


Subject(s)
Mitochondria , Red Meat/analysis , Animals , Cattle , Color , Glycogen/metabolism , Hydrogen-Ion Concentration , Muscle, Skeletal
5.
Meat Sci ; 102: 90-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25556319

ABSTRACT

The sarcoplasmic proteome of beef Longissimus lumborum demonstrating animal-to-animal variation in color stability was examined to correlate proteome profile with color. Longissimus lumborum (36 h post-mortem) muscles were obtained from 73 beef carcasses, aged for 13 days, and fabricated to 2.5-cm steaks. One steak was allotted to retail display, and another was immediately vacuum packaged and frozen at -80°C. Aerobically packaged steaks were stored under display, and color was evaluated on days 0 and 11. The steaks were ranked based on redness and color stability on day 11, and ten color-stable and ten color-labile carcasses were identified. Sarcoplasmic proteome of frozen steaks from the selected carcasses was analyzed. Nine proteins were differentially abundant in color-stable and color-labile steaks. Three glycolytic enzymes (phosphoglucomutase-1, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase M2) were over-abundant in color-stable steaks and positively correlated (P<0.05) to redness and color stability. These results indicated that animal variations in proteome contribute to differences in beef color.


Subject(s)
Food Quality , Meat/analysis , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Pigments, Biological/biosynthesis , Sarcoplasmic Reticulum/metabolism , Abattoirs , Animals , Cattle , Food Storage , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/biosynthesis , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Muscle Proteins/analysis , Muscle, Skeletal/enzymology , Muscle, Skeletal/growth & development , Phosphoglucomutase/biosynthesis , Phosphoglucomutase/metabolism , Pigments, Biological/analysis , Protein Stability , Pyruvate Kinase/biosynthesis , Pyruvate Kinase/metabolism , Reproducibility of Results , Sarcoplasmic Reticulum/chemistry , Sarcoplasmic Reticulum/enzymology , Two-Dimensional Difference Gel Electrophoresis
6.
Anim Genet ; 43(5): 599-603, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22497335

ABSTRACT

With the high cost of feed for animal production, genetic selection for animals that metabolize feed more efficiently could result in substantial cost savings for cattle producers. The purpose of this study was to identify DNA markers predictive for differences among cattle for traits associated with feed efficiency. Crossbred steers were fed a high-corn diet for 140 days and average daily feed intake (ADFI), average daily gain (ADG), and residual feed intake (RFI) phenotypes were obtained. A region on chromosome 14 was previously associated with RFI in this population of animals. To develop markers with the highest utility for predicting an animal's genetic potential for RFI, we genotyped additional markers within this chromosomal region. These polymorphisms were genotyped on the same animals (n = 1066) and tested for association with ADFI, ADG and RFI. Six markers within this region were associated with RFI (P ≤ 0.05). After conservative correction for multiple testing, one marker at 25.09 Mb remained significant (P = 0.02) and is responsible for 3.6% of the RFI phenotypic variation in this population of animals. Several of these markers were also significant for ADG, although none were significant after correction. Marker alleles with positive effects on ADG corresponded to lower RFI, suggesting an effect increasing growth without increasing feed intake. All markers were also assessed for their effects on meat quality and carcass traits. All of the markers associated with RFI were associated with adjusted fat thickness (AFT, P ≤ 0.009) and three were also associated with hot carcass weight (HCW, P ≤ 0.003). Marker alleles associated with lower RFI were also associated with reduced AFT, and if they were associated for HCW, the effect was an increase in weight. These markers may be useful as prediction tools for animals that utilize feed more efficiently; however, validation with additional populations of cattle is required.


Subject(s)
Cattle/genetics , Feeding Behavior , Meat , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Animals , Body Composition , Cattle/growth & development , Cattle/physiology , Chromosomes, Mammalian/genetics , Genetic Association Studies , Genetic Markers , Genotype , Male , Meat/standards , Weight Gain
7.
BMC Genet ; 12: 103, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22168586

ABSTRACT

BACKGROUND: In a previously reported genome-wide association study based on a high-density bovine SNP genotyping array, 8 SNP were nominally associated (P ≤ 0.003) with average daily gain (ADG) and 3 of these were also associated (P ≤ 0.002) with average daily feed intake (ADFI) in a population of crossbred beef cattle. The SNP were clustered in a 570 kb region around 38 Mb on the draft sequence of bovine chromosome 6 (BTA6), an interval containing several positional and functional candidate genes including the bovine LAP3, NCAPG, and LCORL genes. The goal of the present study was to develop and examine additional markers in this region to optimize the ability to distinguish favorable alleles, with potential to identify functional variation. RESULTS: Animals from the original study were genotyped for 47 SNP within or near the gene boundaries of the three candidate genes. Sixteen markers in the NCAPG-LCORL locus displayed significant association with both ADFI and ADG even after stringent correction for multiple testing (P ≤ 005). These markers were evaluated for their effects on meat and carcass traits. The alleles associated with higher ADFI and ADG were also associated with higher hot carcass weight (HCW) and ribeye area (REA), and lower adjusted fat thickness (AFT). A reduced set of markers was genotyped on a separate, crossbred population including genetic contributions from 14 beef cattle breeds. Two of the markers located within the LCORL gene locus remained significant for ADG (P ≤ 0.04). CONCLUSIONS: Several markers within the NCAPG-LCORL locus were significantly associated with feed intake and body weight gain phenotypes. These markers were also associated with HCW, REA and AFT suggesting that they are involved with lean growth and reduced fat deposition. Additionally, the two markers significant for ADG in the validation population of animals may be more robust for the prediction of ADG and possibly the correlated trait ADFI, across multiple breeds and populations of cattle.


Subject(s)
Body Composition/genetics , Cattle/genetics , Cell Cycle Proteins/genetics , Animals , Chromosome Mapping , Genetic Markers , Meat , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Weight Gain/genetics
8.
BMC Vet Res ; 4: 25, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18625065

ABSTRACT

BACKGROUND: In 2006, an atypical U.S. case of bovine spongiform encephalopathy (BSE) was discovered in Alabama and later reported to be polymorphic for glutamate (E) and lysine (K) codons at position 211 in the bovine prion protein gene (Prnp) coding sequence. A bovine E211K mutation is important because it is analogous to the most common pathogenic mutation in humans (E200K) which causes hereditary Creutzfeldt - Jakob disease, an autosomal dominant form of prion disease. The present report describes a high-throughput matrix-associated laser desorption/ionization-time-of-flight mass spectrometry assay for scoring the Prnp E211K variant and its use to determine an upper limit for the K211 allele frequency in U.S. cattle. RESULTS: The K211 allele was not detected in 6062 cattle, including those from five commercial beef processing plants (3892 carcasses) and 2170 registered cattle from 42 breeds. Multiple nearby polymorphisms in Prnp coding sequence of 1456 diverse purebred cattle (42 breeds) did not interfere with scoring E211 or K211 alleles. Based on these results, the upper bounds for prevalence of the E211K variant was estimated to be extremely low, less than 1 in 2000 cattle (Bayesian analysis based on 95% quantile of the posterior distribution with a uniform prior). CONCLUSION: No groups or breeds of U.S. cattle are presently known to harbor the Prnp K211 allele. Because a carrier was not detected, the number of additional atypical BSE cases with K211 will also be vanishingly low.


Subject(s)
Cattle/genetics , Encephalopathy, Bovine Spongiform/genetics , Prions/genetics , Animals , Codon/genetics , Female , Gene Frequency/genetics , Genetic Variation , Haplotypes , Male , Polymorphism, Single Nucleotide , Prevalence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , United States
9.
Meat Sci ; 70(4): 621-6, 2005 Aug.
Article in English | MEDLINE | ID: mdl-22063888

ABSTRACT

This experiment addressed the hypothesis that 6-phosphofructokinase (6-PFK) regulates glycolysis in postmortem in M. sternocephalicus pars mandibularis. In two separate experiments, muscle samples were excised from randomly-selected steers that would typically be found on a commercial slaughter floor. In the first experiment, two samples were obtained from each of 6 steers immediately post-exsanguination; one sample was immersed immediately in liquid nitrogen and the other was stored at 4°C for 4 d, to compare 6-PFK enzyme activity and glycolytic intermediate concentrations between fresh and d 4 postmortem samples. The greatest activity of 6-PFK was measured in fresh muscle extracts at pH 7.4, whereas little activity was detectable at pH 7.0. 6-PFK activity measured at pH 7.4 in d 4 samples also was barely detectable. Hill coefficient values for 6-PFK in fresh samples measured at pH 7.4 or 7.0, and d 4 samples measured at pH 7.4 were 2.9, 0.8, and 0.7, respectively, indicating loss of cooperativity with both lowered pH during assay and with time postmortem. Glycogen concentrations decreased 45% from d 0 to d 4, to 39.6µmol glycogen/g muscle. Muscle concentrations of free glucose increased (P<0.001) from 0.84µmol/g at d 0 to 6.54µmol/g at d 4. Fructose-6-phosphate and glucose-6-phosphate increased (P<0.001) from d 0 to d 4 (2.8-fold and 4.7-fold, respectively). Lactate began accumulating immediately (3.33µmol/g) and was elevated to 45.9µmol/g by d 4. In the second experiment, conversion of [U-(14)C]glucose to lactate, glycogen, and CO(2) was measured in vitro at pH 7.4 and 7.0 in fresh M. sternocephalicus pars mandibularis strips from four steers. Total [U-(14)C]glucose was less in muscle strips incubated at pH 7.0 than in those incubated at pH 7.4 (55.5 vs. 123nmol glucose utilized per 100mg muscle per h; P=0.04), due primarily to a reduction in glucose conversion to lactate. The conversion of glucose to glycogen or CO(2) in vitro was unaffected by media pH. These results suggest that the postmortem decline in pH in M. sternocephalicus pars mandibularis ultimately inactivates 6-PFK; this occurs prior to the depletion of glycogen reserves.

SELECTION OF CITATIONS
SEARCH DETAIL
...