Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cells ; 12(12)2023 06 20.
Article in English | MEDLINE | ID: mdl-37371141

ABSTRACT

The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.


Subject(s)
Biological Products , Dermatitis , Psoriasis , Humans , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Psoriasis/drug therapy , Sirolimus , Biological Products/pharmacology , Biological Products/therapeutic use
2.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771126

ABSTRACT

The proprotein convertase subtilisin kexin type 9 (PCSK9) emerged as a molecular target of great interest for the management of cardiovascular disorders due to its ability to reduce low density lipoprotein (LDL) cholesterol by binding and targeting at LDLR for lysosomal degradation in cells. Preliminary studies revealed that pseurotin A (PsA), a spiro-heterocyclic γ-lactam alkaloid from several marine and terrestrial Aspergillus and Penicillium species, has the ability to dually suppress the PCSK9 expression and protein-protein interaction (PPI) with LDLR, resulting in an anti-hypercholesterolemic effect and modulating the oncogenic role of PCSK9 axis in breast and prostate cancers progression and recurrence. Thus, a preliminary assessment of the PsA acute toxicity represents the steppingstone to develop PsA as a novel orally active PCSK9 axis modulating cancer recurrence inhibitor. PsA studies for in vitro toxicity on RWPE-1 and CCD 841 CoN human non-tumorigenic prostate and colon cells, respectively, indicated a cellular death shown at a 10-fold level of its reported anticancer activity. Moreover, a Western blot analysis revealed a significant downregulation of the pro-survival marker Bcl-2, along with the upregulation of the proapoptotic Bax and caspases 3/7, suggesting PsA-mediated induction of cell apoptosis at very high concentrations. The Up-and-Down methodology determined the PsA LD50 value of >550 mg/kg in male and female Swiss albino mice. Animals were orally administered single doses of PsA at 10, 250, and 500 mg/kg by oral gavage versus vehicle control. Mice were observed daily for 14 days with special care over the first 24 h after dosing to monitor any abnormalities in their behavioral, neuromuscular, and autonomic responses. After 14 days, the mice were euthanized, and their body and organ weights were recorded and collected. Mice plasma samples were subjected to comprehensive hematological and biochemical analyses. Collected mouse organs were histopathologically examined. No morbidity was detected following the PsA oral dosing. The 500 mg/kg female dosing group showed a 45% decrease in the body weight after 14 days but displayed no other signs of toxicity. The 250 mg/kg female dosing group had significantly increased serum levels of liver transaminases AST and ALT versus vehicle control. Moreover, a modest upregulation of apoptotic markers was observed in liver tissues of both animal sexes at 500 mg/kg dose level. However, a histopathological examination revealed no damage to the liver, kidneys, heart, brain, or lungs. While these findings suggest a possible sex-related toxicity at higher doses, the lack of histopathological injury implies that single oral doses of PsA, up to 50-fold the therapeutic dose, do not cause acute organ toxicity in mice though further studies are warranted.


Subject(s)
Arthritis, Psoriatic , Prostatic Neoplasms , Male , Mice , Humans , Animals , Proprotein Convertase 9 , Serine Endopeptidases/metabolism , Proprotein Convertases/metabolism , Prostate/metabolism , Receptors, LDL/metabolism , Prostatic Neoplasms/drug therapy
3.
J Biol Chem ; 299(1): 102745, 2023 01.
Article in English | MEDLINE | ID: mdl-36436558

ABSTRACT

Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the ß-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.


Subject(s)
Bile Acids and Salts , Diet, Western , Animals , Male , Mice , Acyl Coenzyme A/metabolism , Bile Acids and Salts/metabolism , Chenodeoxycholic Acid , Fatty Acids/metabolism , Liver/metabolism , Oxidation-Reduction , Nudix Hydrolases
4.
Front Immunol ; 13: 1075804, 2022.
Article in English | MEDLINE | ID: mdl-36741386

ABSTRACT

Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperplasia and aberrant immune response. In addition to aberrant cytokine production, psoriasis is associated with activation of the Akt/mTOR pathway. mTOR/S6K1 regulates T-lymphocyte activation and migration, keratinocytes proliferation and is upregulated in psoriatic lesions. Several drugs that target Th1/Th17 cytokines or their receptors have been approved for treating psoriasis in humans with variable results necessitating improved therapies. Fisetin, a natural dietary polyphenol with anti-oxidant and anti-proliferative properties, covalently binds mTOR/S6K1. The effects of fisetin on psoriasis and its underlying mechanisms have not been clearly defined. Here, we evaluated the immunomodulatory effects of fisetin on Th1/Th17-cytokine-activated adult human epidermal keratinocytes (HEKa) and anti-CD3/CD28-stimulated inflammatory CD4+ T cells and compared these activities with those of rapamycin (an mTOR inhibitor). Transcriptomic analysis of HEKa revealed 12,713 differentially expressed genes (DEGs) in the fisetin-treated group compared to 7,374 DEGs in the rapamycin-treated group, both individually compared to a cytokine treated group. Gene ontology analysis revealed enriched functional groups related to PI3K/Akt/mTOR signaling pathways, psoriasis, and epidermal development. Using in silico molecular modeling, we observed a high binding affinity of fisetin to IL-17A. In vitro, fisetin significantly inhibited mTOR activity, increased the expression of autophagy markers LC3A/B and Atg5 in HEKa cells and suppressed the secretion of IL-17A by activated CD4+ T lymphocytes or T lymphocytes co-cultured with HEKa. Topical administration of fisetin in an imiquimod (IMQ)-induced mouse psoriasis model exhibited a better effect than rapamycin in reducing psoriasis-like inflammation and Akt/mTOR phosphorylation and promoting keratinocyte differentiation and autophagy in mice skin lesions. Fisetin also significantly inhibited T-lymphocytes and F4/80+ macrophage infiltration into skin. We conclude that fisetin potently inhibits IL-17A and the Akt/mTOR pathway and promotes keratinocyte differentiation and autophagy to alleviate IMQ-induced psoriasis-like disease in mice. Altogether, our findings suggest fisetin as a potential treatment for psoriasis and possibly other inflammatory skin diseases.


Subject(s)
Dermatitis , Psoriasis , Humans , Animals , Mice , Interleukin-17/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Inflammation/metabolism , Imiquimod/adverse effects , Cytokines/metabolism , Disease Models, Animal , Autophagy , Sirolimus/therapeutic use
5.
Am J Physiol Cell Physiol ; 321(6): C964-C977, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34586897

ABSTRACT

Pulmonary microvascular endothelial cells (PMVECs) uniquely express an α1G-subtype of voltage-gated T-type Ca2+ channel. We have previously revealed that the α1G channel functions as a background Ca2+ entry pathway that is critical for the cell proliferation, migration, and angiogenic potential of PMVECs, a novel function attributed to the coupling between α1G-mediated Ca2+ entry and constitutive Akt phosphorylation and activation. Despite this significance, mechanism(s) that link the α1G-mediated Ca2+ entry to Akt phosphorylation remain incompletely understood. In this study, we demonstrate that Ca2+/calmodulin-dependent protein kinase (CaMK) 4 serves as a downstream effector of the α1G-mediated Ca2+ entry to promote the angiogenic potential of PMVECs. Notably, CaMK2 and CaMK4 are both expressed in PMVECs. Pharmacological blockade or genetic knockdown of the α1G channel led to a significant reduction in the phosphorylation level of CaMK4 but not the phosphorylation level of CaMK2. Pharmacological inhibition as well as genetic knockdown of CaMK4 significantly decreased cell proliferation, migration, and network formation capacity in PMVECs. However, CaMK4 inhibition or knockdown did not alter Akt phosphorylation status in PMVECs, indicating that α1G/Ca2+/CaMK4 is independent of the α1G/Ca2+/Akt pathway in sustaining the cells' angiogenic potential. Altogether, these findings suggest a novel α1G-CaMK4 signaling complex that regulates the Ca2+-dominated angiogenic potential in PMVECs.


Subject(s)
Calcium Channels, T-Type/metabolism , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Calcium/metabolism , Endothelial Cells/enzymology , Lung/blood supply , Microvessels/enzymology , Neovascularization, Physiologic , Angiogenesis Inhibitors/pharmacology , Animals , Calcium Signaling/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 4/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 4/genetics , Cell Movement , Cell Proliferation , Cells, Cultured , Endothelial Cells/drug effects , Male , Microvessels/drug effects , Neovascularization, Physiologic/drug effects , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley
6.
Ticks Tick Borne Dis ; 12(5): 101775, 2021 09.
Article in English | MEDLINE | ID: mdl-34218056

ABSTRACT

Colorado tick fever virus (CTFV) belongs to the genus Coltivirus of the Reoviridae family, and it is the causative agent of Colorado tick fever. Symptoms of the infection are characterized by sudden biphasic fever, headache, and petechial rash, while severe forms of the disease can include meningoencephalitis, hemorrhagic fever, and death in children. However, the mechanisms underlying CTFV induced pathology and severe complications remain unknown. As CTFV is spread by tick bites and disseminates systemically via hematogenous routes, we performed in vitro analysis examining the interactions between endothelial cells (ECs) and CTFV. Our findings indicate that dermal microvascular ECs, HMEC-1, are susceptible and permissive to CTFV infection. To investigate the role of CTFV infection on endothelial barrier function, we assessed transendothelial electrical resistance (TEER) by xCELLigence and observed a dose-dependent decrease in cell index, indicating increased vascular permeability starting at approximately hour 18 (MOI=1) and hour 26 (MOI=0.1). Since CTFV induced cytopathic effect and increased vascular permeability in HMEC-1 cells, we hypothesized that CTFV causes apoptotic cell death. Our results showed that HMEC-1 cells infected with CTFV at 48 h caused a significant increase in Annexin V staining with reduced viability compared to uninfected cells suggesting CTFV induces apoptotic cell death in human ECs. Electron microscopy also was consistent with apoptotic features, including chromatin condensation and cell blebbing. Furthermore, CTFV induced caspase-3/7 activation at 24 and 48 h post-infection (hpi). The inhibition of caspase activity using Z-VAD-FMK reduced CTFV induced cell death and significantly reduced viral titer. These results indicated that CTFV can infect ECs, exerting direct adverse effects, leading to vascular permeability and cell death. Overall, our data suggest that caspase-mediated apoptosis is a critical mechanism by which CTFV induces disease in the host and enhances viral replication. Future studies will examine the viral and cellular determinants involved in CTFV induced apoptosis in human ECs.


Subject(s)
Apoptosis , Colorado tick fever virus/physiology , Virus Replication , Cell Line , Endothelial Cells/physiology , Endothelial Cells/virology , Humans
7.
Arch Toxicol ; 95(8): 2883-2889, 2021 08.
Article in English | MEDLINE | ID: mdl-34148101

ABSTRACT

The International Agency for Research on Cancer (IARC) has recently proposed employing "ten key characteristics of human carcinogens" (TKCs) to determine the potential of agents for harmful effects. The TKCs seem likely to confuse the unsatisfactory correlation from testing regimes that have ignored the differences evident when cellular changes are compared in short and long-lived species, with their very different stem cell and somatic cell phylogenies. The proposed characteristics are so broad that their use will lead to an increase in the current unacceptably high rate of false positives. It could be an informative experiment to take well-established approved therapeutics with well-known human safety profiles and test them against this new TKC paradigm. Cancers are initiated and driven by heritable and transient changes in gene expression, expand clonally, and progress via additional associated acquired mutations and epigenetic alterations that provide cells with an evolutionary advantage. The genotoxicity testing protocols currently employed and required by regulation, emphasize testing for the mutational potential of the test agent. Two-year, chronic rodent cancer bioassays are intended to test for the entire spectrum of carcinogenic transformation. The use of cytotoxic doses causing increased, sustained cell proliferation that facilitates accumulated genetic damage leads to a high false-positive rate of tumor induction. Current cancer hazard assessment protocols and weight-of-the-evidence analysis of agent-specific cancer risk align poorly with the pathogenesis of human carcinoma and so need modernization and improvement in ways suggested here.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens/toxicity , Neoplasms/chemically induced , Animals , Carcinogenicity Tests/methods , Carcinogens/administration & dosage , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Mutagenicity Tests/methods , Risk Assessment , Rodentia , Sensitivity and Specificity
8.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L691-L700, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30758991

ABSTRACT

The second messenger, cAMP, is highly compartmentalized to facilitate signaling specificity. Extracellular vesicles (EVs) are submicron, intact vesicles released from many cell types that can act as biomarkers or be involved in cell-to-cell communication. Although it is well recognized that EVs encapsulate functional proteins and RNAs/miRNAs, currently it is unclear whether cyclic nucleotides are encapsulated within EVs to provide an additional second messenger compartment. Using ultracentrifugation, EVs were isolated from the culture medium of unstimulated systemic and pulmonary endothelial cells. EVs were also isolated from pulmonary microvascular endothelial cells (PMVECs) following stimulation of transmembrane adenylyl cyclase (AC) in the presence or absence of the phosphodiesterase 4 inhibitor rolipram over time. Whereas cAMP was detected in EVs isolated from endothelial cells derived from different vascular beds, it was highest in EVs isolated from PMVECs. Treatment of PMVECs with agents that increase near-membrane cAMP led to an increase in cAMP within corresponding EVs, yet there was no increase in EV number. Elevated cell cAMP, measured by whole cell measurements, peaked 15 min after treatment, yet in EVs the peak increase in cAMP was delayed until 60 min after cell stimulation. Cyclic AMP was also increased in EVs collected from the perfusate of isolated rat lungs stimulated with isoproterenol and rolipram, thus corroborating cell culture findings. When added to unperturbed confluent PMVECs, EVs containing elevated cAMP were not barrier disruptive like cytosolic cAMP but maintained monolayer resistance. In conclusion, PMVECs release EVs containing cAMP, providing an additional compartment to cAMP signaling.


Subject(s)
Cell Communication , Cyclic AMP/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Lung/metabolism , Second Messenger Systems , Adenylyl Cyclases/metabolism , Animals , Endothelial Cells/cytology , Lung/cytology , Male , Rats , Rats, Sprague-Dawley
9.
Am J Physiol Cell Physiol ; 316(3): C353-C364, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30649917

ABSTRACT

Pulmonary microvascular endothelial cells (PMVECs) display a rapid angioproliferative phenotype, essential for maintaining homeostasis in steady-state and promoting vascular repair after injury. Although it has long been established that endothelial cytosolic Ca2+ ([Ca2+]i) transients are required for proliferation and angiogenesis, mechanisms underlying such regulation and the transmembrane channels mediating the relevant [Ca2+]i transients remain incompletely understood. In the present study, the functional role of the microvascular endothelial site-specific α1G T-type Ca2+ channel in angiogenesis was examined. PMVECs intrinsically possess an in vitro angiogenic "network formation" capacity. Depleting extracellular Ca2+ abolishes network formation, whereas blockade of vascular endothelial growth factor receptor or nitric oxide synthase has little or no effect, suggesting that the network formation is a [Ca2+]i-dependent process. Blockade of the T-type Ca2+ channel or silencing of α1G, the only voltage-gated Ca2+ channel subtype expressed in PMVECs, disrupts network formation. In contrast, blockade of canonical transient receptor potential (TRP) isoform 4 or TRP vanilloid 4, two other Ca2+ permeable channels expressed in PMVECs, has no effect on network formation. T-type Ca2+ channel blockade also reduces proliferation, cell-matrix adhesion, and migration, three major components of angiogenesis in PMVECs. An in vivo study demonstrated that the mice lacking α1G exhibited a profoundly impaired postinjury cell proliferation in the lungs following lipopolysaccharide challenge. Mechanistically, T-type Ca2+ channel blockade reduces Akt phosphorylation in a dose-dependent manner. Blockade of Akt or its upstream activator, phosphatidylinositol-3-kinase (PI3K), also impairs network formation. Altogether, these findings suggest a novel functional role for the α1G T-type Ca2+ channel to promote the cell's angiogenic potential via a PI3K-Akt signaling pathway.


Subject(s)
Calcium Channels, T-Type/metabolism , Endothelial Cells/metabolism , Lung/metabolism , Neovascularization, Pathologic/metabolism , Animals , Calcium/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Female , Lipopolysaccharides/pharmacology , Lung/drug effects , Male , Mice , Phosphatidylinositol 3-Kinase/metabolism , Rats , Signal Transduction/drug effects , TRPC Cation Channels/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Pulm Circ ; 9(1): 2045894019826941, 2019.
Article in English | MEDLINE | ID: mdl-30632898

ABSTRACT

Herein we describe lung vascular injury and repair using a rodent model of Pseudomonas aeruginosa pneumonia-induced acute respiratory distress syndrome (ARDS) during: 1) the exudative phase (48-hour survivors) and 2) the reparative/fibro-proliferative phase (1-week survivors). Pneumonia was induced by intratracheal instillation of P. aeruginosa strain PA103, and lung morphology and pulmonary vascular function were determined subsequently. Pulmonary vascular function was assessed in mechanically ventilated animals in vivo (air dead space, PaO2, and lung mechanics) and lung permeability was determined in isolated perfused lungs ex vivo (vascular filtration coefficient and extravascular lung water). At 48 hours post infection, histological analyses demonstrated capillary endothelial disruption, diffuse alveolar damage, perivascular cuffs, and neutrophil influx into lung parenchyma. Infected animals displayed clinical hallmarks of ARDS, including increased vascular permeability, increased dead space, impaired gas exchange, and decreased lung compliance. Overall, the animal infection model recapitulated the morphological and functional changes typically observed in lungs from patients during the exudative phase of ARDS. At 1 week post infection, there was lung histological and pulmonary vascular functional evidence of repair when compared with 48 hours post infection; however, some parameters were still impaired when compared with uninfected controls. Importantly, lungs displayed increased fibrosis and cellular hyperplasia reminiscent of lungs from patients during the fibro-proliferative phase of ARDS. Control, sham inoculated animals showed normal lung histology and function. These data represent the first comprehensive assessment of lung pathophysiology during the exudative and reparative/fibro-proliferative phases of P. aeruginosa pneumonia-induced ARDS, and position this pre-clinical model for use in interventional studies aimed at advancing clinical care.

11.
J Appl Physiol (1985) ; 126(2): 494-501, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30571293

ABSTRACT

Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics.


Subject(s)
Capillaries/physiology , Erythrocytes/physiology , Hemodynamics , Lung/blood supply , Microcirculation , Models, Cardiovascular , Pulmonary Circulation , Animals , Blood Flow Velocity , Dogs , Fractals , Male , Microscopy, Video , Models, Animal , Nonlinear Dynamics , Time Factors , Tissue Fixation
12.
PLoS One ; 10(8): e0135533, 2015.
Article in English | MEDLINE | ID: mdl-26274589

ABSTRACT

Microparticles (MPs) are released constitutively and from activated cells. MPs play significant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the membrane of cells has frequently been exploited to identify specific cell types, however the glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs, released both constitutively and during injury, from vascular cells have a glycocalyx matching those of the parental cell type to provide information on MP origin. For these studies we used rat pulmonary microvascular and artery endothelium, pulmonary smooth muscle, and aortic endothelial cells. MPs were collected from healthy or cigarette smoke injured cells and analyzed with a panel of lectins for specific glycocalyx linkages. Intriguingly, we determined that the MPs released either constitutively or stimulated by CSE injury did not express the same glycocalyx of the parent cells. Further, the glycocalyx was not unique to any of the specific cell types studied. These data suggest that MPs from both normal and healthy vascular cells do not share the parental cell glycocalyx makeup.


Subject(s)
Cell-Derived Microparticles/metabolism , Glycocalyx/chemistry , Lectins/metabolism , Smoking/adverse effects , Animals , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Glycocalyx/drug effects , Glycocalyx/metabolism , Microscopy, Electron, Transmission , Rats
13.
Pulm Circ ; 4(1): 110-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25006426

ABSTRACT

Pulmonary endothelium displays considerable heterogeneity along the vascular axis, from arteries to capillaries to veins. Griffonia simplicifolia is a lectin that recognizes pulmonary microvascular endothelium with preference over extra-alveolar endothelium in both arteries and veins, yet the precise vascular location where this phenotypic shift occurs is poorly resolved. We gelatin-filled the circulation and agarose-loaded the airways and then labeled the lung with Griffonia lectin to enable visualization of the endothelial transition zone. Endothelium in vessels with internal diameters less than 38 µm were uniformly Griffonia positive, whereas vessels with internal diameters greater than 60 µm were always Griffonia negative. Two populations of endothelium were identified in vessels ranging from 38 to 60 µm in diameter, including some that were positive and others that were negative for binding to G. simplicifolia. To better resolve this endothelial transition zone, we performed morphology studies to measure the distribution of Weibel-Palade bodies (WPbs), since WPbs are present in conduit vessel endothelium and absent in capillary endothelium. WPbs were found in endothelium with vascular dimensions as small as 18 µm in diameter but were not found in capillaries. Thus, we identify with precision that the endothelial phenotype transition from a cell that does not interact with Griffonia lectin to one that does occurs in blood vessels with internal diameters of approximately 38 µm, and we reveal an unappreciated vascular zone, between 18 and 38 µm in diameter, where endothelium both is Griffonia positive and possesses WPbs.

14.
BMC Clin Pathol ; 14(1): 46, 2014.
Article in English | MEDLINE | ID: mdl-25580091

ABSTRACT

BACKGROUND: At the time of the study, the HIV-treatment policy in South Africa included highly active antiretroviral therapy (HAART) regimens 1 (nucleotide reverse transcriptase inhibitors (NRTIs) only), and 2 (protease inhibitors (PI) and NRTIs). HAART is associated with the lipodystrophy syndrome, insulin resistance and reduced total adiponectin (TA) levels. The high molecular weight (HMW):TA ratio is a superior marker of insulin resistance. The aim of this study was to establish whether HMW:TA ratios are low in patients on PIs and whether they correlate with insulin resistance. METHODS: This was a cross-sectional study undertaken in an antiretroviral clinic at a tertiary hospital. The participants were 66 HIV-infected females: 22 were on regimen 2 (PI group), 22 on regimen 1 (non-PI) and 22 treatment naïve (TN), matched for BMI and age. Patients with a history of diabetes or impaired glucose tolerance were excluded. Serum adiponectin multimers were analysed using the AlpcoTM Adiponectin (Multimeric) enzyme immunoassay. Waist hip ratios (WHR), glucose and insulin levels were assessed, and HOMA-IR and QUICKI calculated. Data were analysed non-parametrically and multivariate analysis was performed. RESULTS: TA and HMW levels were lower in the treatment groups than in the TN group. HMW:TA was lower in the PI than in the non-PI and TN groups, and in the non-PI than in the TN groups. HMW:TA correlated negatively with waist, insulin and HOMA-IR, independently of BMI and duration of therapy. HOMA-IR and QUICKI did not differ among the groups. CONCLUSION: HMW:TA is significantly decreased with HAART (particularly with PIs, but also with non-PIs) and may be a more sensitive marker of insulin resistance in these patients than conventional markers or HMW and total adiponectin individually.

15.
Respir Care ; 58(10): 1598-605, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23550171

ABSTRACT

BACKGROUND: The purpose of this study was to compare the ability of 3 portable oxygen concentrators (POCs) to maintain S(pO2) ≥ 90% during exercise in patients with chronic lung disease. METHODS: Twenty-one subjects with chronic lung disease (18 with COPD, 3 with pulmonary fibrosis) and documented room air exertional S(pO2) ≤ 85% performed four 6-min walk tests: a control walk using the subject's current oxygen system and prescribed exertional flow rate, and 1 walk with each of the 3 POCs (Eclipse 3, EverGo, and iGo) at their maximum pulse-dose setting. RESULTS: S(pO2) was significantly higher pre-walk and post-walk with the Eclipse 3, compared to the other POCs (all P < .01). The subjects also walked farther and maintained a mean S(pO2) ≥ 90% with the Eclipse 3 (both P < .01), which delivers the largest oxygen bolus. The subjects indicated that they preferred the EverGo's physical characteristics, but that the Eclipse 3 responded best to their breathing. The iGo was rated less favorably than Eclipse 3 or EverGo. CONCLUSIONS: The Eclipse 3 was best at meeting the subjects' clinical needs. POC users should be appropriately tested during all activities of daily living, to ensure adequate oxygenation. The healthcare provider should provide information and help to direct the subject toward the most clinically appropriate oxygen system, while being mindful of the patient's preferences and lifestyle. (Clinicaltrials.gov NCT01653730).


Subject(s)
Oximetry/methods , Oxygen Consumption/physiology , Oxygen Inhalation Therapy/methods , Oxygen/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Walking/physiology , Aged , Aged, 80 and over , Equipment Design , Exercise Test/instrumentation , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Retrospective Studies , Time Factors , Treatment Outcome
16.
J Cell Biochem ; 114(8): 1729-37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23386514

ABSTRACT

The molecular basis of insulin resistance induced by HIV protease inhibitors (HPIs) remains unclear. In this study, Chinese hamster ovary cells transfected with high levels of human insulin receptor (CHO-IR) and 3T3-L1 adipocytes were used to elucidate the mechanism of this side effect. Indinavir and nelfinavir induced a significant decrease in tyrosine phosphorylation of the insulin receptor ß-subunit. Indinavir caused a significant increase in the phosphorylation of insulin receptor substrate-1 (IRS-1) on serine 307 (S307) in both CHO-IR cells and 3T3-L1 adipocytes. Nelfinavir also inhibited phosphorylation of Map/ERK kinase without affecting insulin-stimulated Akt phosphorylation. Concomitantly, levels of protein tyrosine phosphatase 1B (PTP1B), suppressor of cytokines signaling-1 and -3 (SOCS-1 and -3), Src homology 2B (SH2B) and adapter protein with a pleckstrin homology domain and an SH2 domain (APS) were not altered significantly. When CHO-IR cells were pre-treated with sodium salicylate (NaSal), the effects of indinavir on tyrosine phosphorylation of the IR ß-subunit and phosphorylation of IRS-1 at S307 were abrogated. These data suggest a potential role for the NFκB pathway in insulin resistance induced by HPIs.


Subject(s)
Anti-Infective Agents/pharmacology , HIV Protease Inhibitors/adverse effects , Indinavir/adverse effects , Insulin Resistance , Nelfinavir/adverse effects , Receptor, Insulin/metabolism , Salicylic Acid/pharmacology , 3T3-L1 Cells , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , HIV Protease Inhibitors/pharmacology , Humans , Indinavir/pharmacology , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Nelfinavir/pharmacology , Phosphorylation/drug effects , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/genetics , Signal Transduction
17.
Mol Cancer ; 9: 266, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20929568

ABSTRACT

BACKGROUND: Activated leukocyte cell adhesion molecule (ALCAM) is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. RESULTS: A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. CONCLUSION: Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/metabolism , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Activated-Leukocyte Cell Adhesion Molecule/genetics , Animals , Blotting, Western , Breast Neoplasms/genetics , Cell Line , Cell Line, Tumor , Chromatin Immunoprecipitation , DNA Methylation/genetics , DNA Methylation/physiology , Electrophoretic Mobility Shift Assay , Humans , Immunohistochemistry , Polymerase Chain Reaction , Prognosis , Promoter Regions, Genetic/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction
18.
Am J Physiol Lung Cell Mol Physiol ; 299(3): L353-62, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20562229

ABSTRACT

We have previously implicated transient receptor potential vanilloid 4 (TRPV4) channels and alveolar macrophages in initiating the permeability increase in response to high peak inflation pressure (PIP) ventilation. Alveolar macrophages were harvested from TRPV4(-/-) and TRPV4(+/+) mice and instilled in the lungs of mice of the opposite genotype. Filtration coefficients (K(f)) measured in isolated perfused lungs after ventilation with successive 30-min periods of 9, 25, and 35 cmH(2)O PIP did not significantly increase in lungs from TRPV4(-/-) mice but increased >2.2-fold in TRPV4(+/+) lungs, TRPV4(+/+) lungs instilled with TRPV4(-/-) macrophages, and TRPV4(-/-) lungs instilled with TRPV4(+/+) macrophages after ventilation with 35 cmH(2)O PIP. Activation of TRPV4 with 4-alpha-phorbol didecanoate (4alphaPDD) significantly increased intracellular calcium, superoxide, and nitric oxide production in TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. Cross-sectional areas increased nearly 3-fold in TRPV4(+/+) macrophages compared with TRPV4(-/-) macrophages after 4alphaPDD. Immunohistochemistry staining of lung tissue for nitrotyrosine revealed increased amounts in high PIP ventilated TRPV4(+/+) lungs compared with low PIP ventilated TRPV4(+/+) or high PIP ventilated TRPV4(-/-) lungs. Thus TRPV4(+/+) macrophages restored susceptibility of TRPV4(-/-) lungs to mechanical injury. A TRPV4 agonist increased intracellular calcium and reactive oxygen and nitrogen species in harvested TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. K(f) increases correlated with tissue nitrotyrosine, a marker of peroxynitrite production.


Subject(s)
Macrophage Activation , TRPC Cation Channels/metabolism , Ventilator-Induced Lung Injury/physiopathology , Animals , Disease Susceptibility , Genotype , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Immunohistochemistry/methods , In Vitro Techniques , Lung/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Macrophages, Alveolar/transplantation , Mice , Mice, Knockout , Permeability , Phorbol Esters/pharmacology , Pulmonary Edema/physiopathology , Pulmonary Ventilation , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Staining and Labeling , TRPC Cation Channels/agonists , TRPC Cation Channels/deficiency , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Ventilator-Induced Lung Injury/pathology
19.
Am J Physiol Lung Cell Mol Physiol ; 299(1): L86-97, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20435690

ABSTRACT

Regulated P-selectin surface expression provides a rapid measure for endothelial transition to a proinflammatory phenotype. In general, P-selectin surface expression results from Weibel-Palade body (WPb) exocytosis. Yet, it is unclear whether pulmonary capillary endothelium possesses WPbs or regulated P-selectin surface expression and, if so, how inflammatory stimuli initiate exocytosis. We used immunohistochemistry, immunofluorescence labeling, ultrastructural assessment, and an isolated perfused lung model to demonstrate that capillary endothelium lacks WPbs but possesses P-selectin. Thrombin stimulated P-selectin surface expression in both extra-alveolar vessel and alveolar capillary endothelium. Only in capillaries was the thrombin-stimulated P-selectin surface expression considerably mitigated by pharmacologic blockade of the T-type channel or genetic knockout of the T-type channel alpha(1G)-subunit. Depolarization of endothelial plasma membrane via high K(+) perfusion capable of eliciting cytosolic Ca(2+) transients also provoked P-selectin surface expression in alveolar capillaries that was abolished by T-type channel blockade or alpha(1G) knockout. Our findings reveal an intracellular WPb-independent P-selectin pool in pulmonary capillary endothelium, where the regulated P-selectin surface expression is triggered by Ca(2+) transients evoked through activation of the alpha(1G) T-type channel.


Subject(s)
Calcium Channels, T-Type/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Lung/blood supply , P-Selectin/metabolism , Animals , Calcium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channels, T-Type/genetics , Calcium Signaling/physiology , Endothelial Cells/ultrastructure , Endothelium, Vascular/ultrastructure , Exocytosis/physiology , Humans , Lung/ultrastructure , Male , Mibefradil/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Rats, Sprague-Dawley , Weibel-Palade Bodies/metabolism , Weibel-Palade Bodies/ultrastructure , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
20.
Crit Care Med ; 38(6): 1458-66, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400904

ABSTRACT

OBJECTIVE: Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. DESIGN: Prospective, randomized, controlled study. SETTING: Research laboratory. SUBJECTS: One hundred twenty male CD40 rats. INTERVENTIONS: To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. MEASUREMENTS: Static and dynamic lung mechanics and hemodynamics were measured continuously. MAIN RESULTS: Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. CONCLUSIONS: Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.


Subject(s)
Acute Lung Injury/etiology , Capillary Permeability/physiology , Extravascular Lung Water/physiology , Lung Compliance/physiology , Pulmonary Edema/etiology , Respiratory Mechanics/physiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Capillary Permeability/drug effects , Enzyme Inhibitors/pharmacology , Extravascular Lung Water/drug effects , Lung Compliance/drug effects , Male , Phosphodiesterase Inhibitors/pharmacology , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , Rats , Respiratory Mechanics/drug effects , Rolipram/pharmacology , Thapsigargin/pharmacology , Vascular Resistance/drug effects , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...