Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plast Reconstr Surg ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38548707

ABSTRACT

BACKGROUND: Nerve xenografts harvested from transgenic α1,3-galactosyltransferase knockout (GalT-KO) pigs lack the epitope responsible for hyperacute rejection in pig-to-primate transplants. It is unknown whether these cold preserved nerve grafts support axonal regeneration in another species during and after immunosuppression. In this study, we compare outcomes between autografts and cold preserved xenografts in a rat sciatic model of nerve gap repair. METHODS: Fifty male Lewis rats had a 1 cm sciatic nerve defect repaired using either: autograft and suture (n=10); 1-week or 4-week cold preserved xenograft and suture (n=10 per group); 1-week or 4-week cold preserved xenograft and photochemical tissue bonding using a human amnion wrap (PTB/HAM) (n=10 per group). Rats with xenografts were given tacrolimus until 4 months post-operatively. At 4 and 7 months, rats were euthanized and nerve sections harvested. Monthly sciatic functional index (SFI) scores were calculated. RESULTS: All groups showed increases in SFI scores by 4 and 7 months. The autograft suture group had the highest axon density at 4 and 7 months. The largest decrease in axon density from 4 to 7 months was in the 1-week cold preserved PTB/HAM group. The only significant difference between group SFI scores occurred at 5 months, when both 1-week cold preserved groups had significantly lower scores than the 4-week cold preserved suture group. CONCLUSIONS: Our results in the rat sciatic model suggest that GalT-KO nerve xenografts may be viable alternatives to autografts and demonstrate the need for further studies of long-gap repair and comparison with acellular nerve allografts. CLINICAL RELEVANCE: This proof-of-concept study in the rat sciatic model demonstrates that cold preserved GalT-KO porcine xenografts support axonal regeneration, as well as axonal viability following immunosuppression withdrawal. These results further suggest a role for both cold preservation and photochemical tissue bonding in modulating the immunological response at the nerve repair site.

2.
J Reconstr Microsurg ; 40(3): 232-238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37696294

ABSTRACT

BACKGROUND: Photochemical tissue bonding (PTB) is a technique for peripheral nerve repair in which a collagenous membrane is bonded around approximated nerve ends. Studies using PTB with cryopreserved human amnion have shown promising results in a rat sciatic nerve transection model including a more rapid and complete return of function, larger axon size, and thicker myelination than suture repair. Commercial collagen membranes, such as dehydrated amnion allograft, are readily available, offer ease of storage, and have no risk of disease transmission or tissue rejection. However, the biomechanical properties of these membranes using PTB are currently unknown in comparison to PTB of cryopreserved human amnion and suture neurorrhaphy. METHODS: Rat sciatic nerves (n = 10 per group) were transected and repaired using either suture neurorrhaphy or PTB with one of the following membranes: cryopreserved human amnion, monolayer human amnion allograft (crosslinked and noncrosslinked), trilayer human amnion/chorion allograft (crosslinked and noncrosslinked), or swine submucosa. Repaired nerves were subjected to mechanical testing. RESULTS: During ultimate stress testing, the repair groups that withstood the greatest strain increases were suture neurorrhaphy (69 ± 14%), PTB with crosslinked trilayer amnion (52 ± 10%), and PTB with cryopreserved human amnion (46 ± 20%), although the differences between these groups were not statistically significant. Neurorrhaphy repairs had a maximum load (0.98 ± 0.30 N) significantly greater than all other repair groups except for noncrosslinked trilayer amnion (0.51 ± 0.27 N). During fatigue testing, all samples repaired with suture, or PTBs with either crosslinked or noncrosslinked trilayer amnion were able to withstand strain increases of at least 50%. CONCLUSION: PTB repairs with commercial noncrosslinked amnion allograft membranes can withstand physiological strain and have comparable performance to repairs with human amnion, which has demonstrated efficacy in vivo. These results indicate the need for further testing of these membranes using in vivo animal model repairs.


Subject(s)
Amnion , Sciatic Nerve , Humans , Rats , Animals , Swine , Amnion/surgery , Amnion/transplantation , Sciatic Nerve/surgery , Sciatic Nerve/physiology , Axons/physiology , Transplantation, Homologous , Allografts , Suture Techniques
3.
Acta Neurochir (Wien) ; 165(8): 2293-2298, 2023 08.
Article in English | MEDLINE | ID: mdl-37284839

ABSTRACT

PURPOSE: Photosealing of many biological tissues can be achieved using a biocompatible material in combination with a dye that is activated by visible light to chemically bond over the tissue defect via protein cross-linking reactions. The aim of this study was to test the efficacy of photosealing using a commercially available biomembrane (AmnioExcel Plus) to securely close dural defects in comparison to another sutureless method (fibrin glue) in terms of repair strength. METHODS: Two-millimeter diameter holes were created in dura harvested from New Zealand white rabbits and repaired ex vivo using one of two methods: (1) in n = 10 samples, photosealing was used to bond a 6-mm-diameter AmnioExcel Plus patch over the dural defect, and (2) in n = 10 samples, fibrin glue was used to attach the same patch over the dural defect. Repaired dura samples were then subjected to burst pressure testing. Histological analysis was also performed of photosealed dura. RESULTS: The mean burst pressures of rabbit dura repaired with photosealing and fibrin glue were 302 ± 149 mmHg and 26 ± 24 mmHg, respectively. The increased repair strength using photosealing was statistically significant and considerably higher than the normal intracranial pressure of ~ 20 mmHg. Histology demonstrated a tight union at the interface between the dura surface and patch with no disruption of the dura structure. CONCLUSION: The results of this study suggest that photosealing performs better than fibrin glue for the fixation of a patch for ex vivo repair of small dural defects. Photosealing is worthy of testing in pre-clinical models for the repair of dural defects.


Subject(s)
Biocompatible Materials , Fibrin Tissue Adhesive , Animals , Rabbits , Biocompatible Materials/therapeutic use , Dura Mater/surgery , Dura Mater/pathology
4.
J Physiol ; 589(Pt 3): 685-95, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21078590

ABSTRACT

During exercise, sympathetic nervous system activity increases and this contributes to an increase in blood pressure (i.e. exercise pressor reflex). Although animal studies suggest that purinergic P2 receptors on thin fibre sensory nerves are stimulated and evoke this reflex, human data are lacking. In this study, young healthy volunteers performed fatiguing isometric handgrip before and after a local infusion of pyridoxine (i.e. vitamin B(6)) into the 'isolated' circulation of the human forearm. Pyridoxine is converted into a P2-purinoceptor antagonist. Muscle sympathetic nerve activity and blood pressure responses to fatiguing handgrip and post-exercise circulatory occlusion were significantly less after pyridoxine than they were before. These effects were not observed after infusion of saline. These data suggest that P2 receptors contribute to the exercise pressor reflex in humans.


Subject(s)
Baroreflex/physiology , Exercise/physiology , Purinergic P2 Receptor Antagonists/pharmacology , Pyridoxine/pharmacology , Receptors, Purinergic P2/metabolism , Sympathetic Nervous System/physiology , Action Potentials/physiology , Adult , Baroreflex/drug effects , Blood Pressure/drug effects , Blood Pressure/physiology , Cold-Shock Response/physiology , Female , Hand Strength/physiology , Heart Rate/physiology , Humans , Male , Muscle Fatigue/physiology , Peroneal Nerve/physiology , Purinergic P2 Receptor Antagonists/blood , Pyridoxal Phosphate/blood , Pyridoxine/metabolism , Sympathetic Nervous System/drug effects , Time Factors , Young Adult
5.
Circulation ; 111(21): 2748-51, 2005 May 31.
Article in English | MEDLINE | ID: mdl-15911708

ABSTRACT

BACKGROUND: Sympathetic nervous system activity increases with exercise in normal subjects. Heightened peripheral sympathetic nervous activity and the resultant increased neurovascular levels of norepinephrine (NE) evoke vasoconstriction and serve to maintain blood pressure and perfusion to vital organs. Previous work demonstrated that the interstitial ATP concentrations ([ATP]i) rise in contracting skeletal muscle, and it is known that sympathetic nerves have purinergic P2X receptors. Thus, in this report we tested the hypothesis that elevated ATP would stimulate these receptors and increase interstitial NE concentrations ([NE]i). METHODS AND RESULTS: Muscle interstitial samples were collected from microdialysis probes inserted in the skeletal muscle of rats, and dialysate concentrations of ATP and NE were determined by the high-performance liquid chromatography method. Stretch (0.5 kg of tension) increased [ATP]i by 68% (P<0.05) and [NE]i by 45% (P<0.05) in active muscle. The rise in NEi was linearly linked to the elevated ATPi (r=0.878, P<0.001). [NE]i was also elevated by 76% (P<0.05) after ATP (3 micromol/L) was injected into the arterial blood supply of the hindlimb muscles. The [NE]i response to muscle stretch was blunted after the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) was given. Finally, this response was potentiated by the nucleotidase inhibitor 6-N,N-diethyl-beta-gamma-dibromomethylene-D-adenosine-5'-triphosphate (ARL67156). CONCLUSIONS: ATPi released by skeletal muscle during stretch stimulates P2X receptors on the sympathetic nerves and increases the concentration of NEi in the muscle interstitium.


Subject(s)
Adenosine Triphosphate/analysis , Extracellular Fluid/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Norepinephrine/analysis , Adenosine Triphosphate/blood , Adenosine Triphosphate/pharmacology , Animals , Chromatography, High Pressure Liquid , Hindlimb , In Vitro Techniques , Muscle Contraction , Norepinephrine/blood , Rats , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X
6.
J Appl Physiol (1985) ; 95(2): 577-83, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12716867

ABSTRACT

Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636-H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 +/- 2 and 16 +/- 3 mmHg (P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% (P < 0.05) and 200% (P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.


Subject(s)
Adenosine Triphosphate/metabolism , Muscle Contraction/physiology , Muscle Tonus/physiology , Muscle, Skeletal/physiology , Animals , Cats , Denervation , Electric Stimulation , Lumbosacral Region , Male , Microdialysis , Osmolar Concentration , Paralysis/physiopathology , Spinal Nerve Roots/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...