Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
BMC Infect Dis ; 24(1): 686, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982363

ABSTRACT

BACKGROUND: Uganda has a sentinel surveillance system in seven high-risk sites to monitor yellow fever (YF) patterns and detect outbreaks. We evaluated the performance of this system from 2017 to 2022. METHODS: We evaluated selected attributes, including timeliness (lags between different critical time points), external completeness (proportion of expected sentinel sites reporting ≥ 1 suspect case in the system annually), and internal completeness (proportion of reports with the minimum required data elements filled), using secondary data in the YF surveillance database from January 2017-July 2022. We conducted key informant interviews with stakeholders at health facility and national level to assess usefulness, flexibility, simplicity, and acceptability of the surveillance system. RESULTS: In total, 3,073 suspected and 15 confirmed YF cases were reported. The median time lag from sample collection to laboratory shipment was 37 days (IQR:21-54). External completeness was 76%; internal completeness was 65%. Stakeholders felt that the surveillance system was simple and acceptable, but were uncertain about flexibility. Most (71%) YF cases in previous outbreaks were detected through the sentinel surveillance system; data were used to inform interventions such as intensified YF vaccination. CONCLUSION: The YF sentinel surveillance system was useful in detecting outbreaks and informing public health action. Delays in case confirmation and incomplete data compromised its overall effectiveness and efficiency.


Subject(s)
Disease Outbreaks , Sentinel Surveillance , Yellow Fever , Uganda/epidemiology , Humans , Yellow Fever/epidemiology , Yellow Fever/diagnosis
2.
World Neurosurg ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002778

ABSTRACT

OBJECTIVE: To determine the impact of ESIs on postoperative surgical complications. METHODS: This retrospective all-payer database analysis identified 202,181 adult patients undergoing one- to three-level transforaminal lumbar interbody fusion (TLIF) from 2010 to 2020. 1:1 exact matching on comorbidities and demographics was performed, creating two cohorts: (1) patients who received an ESI within 90 days of surgery and (2) patients who did not receive an ESI. The primary outcome was surgical complication rates between groups at 30 days postoperatively. For the secondary outcome, patients were stratified based on injection time before surgery: 1-30, 31-45, 46-60, 61-75, and 76-90 days. Logistic regression was performed between groups to identify temporal associations of complication rates. The p-value was set to 0.05 for the primary analysis, and the Bonferroni correction was utilized for the secondary outcome. RESULTS: Exact matching produced 12,491 pairs for analysis. Groups were well-matched on demographics, comorbidities, and fusion levels. 30-day postoperative rates of surgical complications, hematomas, wound disruptions, or surgical site infections did not differ between groups (p>0.05). The rate of CSF leak was increased in the ESI group (0.19% vs. 0.09%, p=0.042). When temporally stratified, patients receiving an ESI within 30 days had significantly higher odds of CSF leak (OR: 4.24, 95% CI: 1.97-9.14). CONCLUSIONS: Patients who receive an ESI within 30 days of TLIF are at an increased risk for CSF leak. While the incidence of CSF leak remains small, it may be advisable to avoid ESIs at least 30 days before surgery for certain patients.

3.
BMC Infect Dis ; 24(1): 520, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783244

ABSTRACT

BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events.


Subject(s)
Disease Outbreaks , Humans , Uganda/epidemiology , Male , Cross-Sectional Studies , Adult , Female , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Whole Genome Sequencing , Ebolavirus/genetics , Ebolavirus/isolation & purification
4.
Int J Infect Dis ; 145: 107073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38670481

ABSTRACT

OBJECTIVES: Early isolation and care for Ebola disease patients at Ebola Treatment Units (ETU) curb outbreak spread. We evaluated time to ETU entry and associated factors during the 2022 Sudan virus disease (SVD) outbreak in Uganda. METHODS: We included persons with RT-PCR-confirmed SVD with onset September 20-November 30, 2022. We categorized days from symptom onset to ETU entry ("delays") as short (≤2), moderate (3-5), and long (≥6); the latter two were "delayed isolation." We categorized symptom onset timing as "earlier" or "later," using October 15 as a cut-off. We assessed demographics, symptom onset timing, and awareness of contact status as predictors for delayed isolation. We explored reasons for early vs late isolation using key informant interviews. RESULTS: Among 118 case-patients, 25 (21%) had short, 43 (36%) moderate, and 50 (43%) long delays. Seventy-five (64%) had symptom onset later in the outbreak. Earlier symptom onset increased risk of delayed isolation (crude risk ratio = 1.8, 95% confidence interval (1.2-2.8]). Awareness of contact status and SVD symptoms, and belief that early treatment-seeking was lifesaving facilitated early care-seeking. Patients with long delays reported fear of ETUs and lack of transport as contributors. CONCLUSION: Delayed isolation was common early in the outbreak. Strong contact tracing and community engagement could expedite presentation to ETUs.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Uganda/epidemiology , Male , Female , Adult , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/therapy , Middle Aged , Young Adult , Time-to-Treatment , Adolescent , Sudan/epidemiology , Time Factors , Patient Isolation
5.
Int J Infect Dis ; 141: 106959, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340782

ABSTRACT

BACKGROUND: Contact tracing (CT) is critical for ebolavirus outbreak response. Ideally, all new cases after the index case should be previously-known contacts (PKC) before their onset, and spend minimal time ill in the community. We assessed the impact of CT during the 2022 Sudan Virus Disease (SVD) outbreak in Uganda. METHODS: We collated anonymized data from the SVD case and contacts database to obtain and analyze data on CT performance indicators, comparing confirmed cases that were PKC and were not PKC (NPKC) before onset. We assessed the effect of being PKC on the number of people infected using Poisson regression. RESULTS: There were 3844 contacts of 142 confirmed cases (mean: 22 contacts/case). Forty-seven (33%) confirmed cases were PKC. PKCs had fewer median days from onset to isolation (4 vs 6; P<0.007) and laboratory confirmation (4 vs 7; P<0.001) than NPKC. Being a PKC vs NPKC reduced risk of transmitting infection by 84% (IRR=0.16, 95% CI 0.08-0.32). CONCLUSION: Contact identification was sub-optimal during the outbreak. However, CT reduced the time SVD cases spent in the community before isolation and the number of persons infected in Uganda. Approaches to improve contact tracing, especially contact listing, may improve control in future outbreaks.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Contact Tracing , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Uganda/epidemiology , Disease Outbreaks
6.
PLOS Glob Public Health ; 4(1): e0002068, 2024.
Article in English | MEDLINE | ID: mdl-38271379

ABSTRACT

Mass gatherings frequently include close, prolonged interactions between people, which presents opportunities for infectious disease transmission. Over 20,000 pilgrims gathered at Namugongo Catholic and Protestant shrines to commemorate 2022 Uganda Martyr's Day. We described syndromes suggestive of key priority diseases particularly COVID-19 and viral hemorrhagic fever (VHF) among visiting pilgrims during May 25-June 5, 2022. We conducted a survey among pilgrims at the catholic and protestant shrines based on signs and symptoms for key priority diseases: COVID-19 and VHF. A suspected COVID-19 case was defined as acute respiratory illness (temperature greater 37.5°C and at least one sign/symptom of respiratory infection such as cough or shortness of breath) whereas a suspected VHF case was defined as fever >37.5°C and unexplained bleeding among pilgrims who visited Namugongo Catholic and Protestant shrines from May 25 to June 5, 2022. Pilgrims were sampled systematically at entrances and demarcated zonal areas to participate in the survey. Additionally, we extracted secondary data on pilgrims who sought emergency medical services from Health Management Information System registers. Descriptive analysis was conducted to identify syndromes suggestive of key priority diseases. Among 1,350 pilgrims interviewed, 767 (57%) were female. The mean age was 37.9 (±17.9) years. Nearly all pilgrims 1,331 (98.6%) were Ugandans. A total of 236 (18%) reported ≥1 case definition symptom and 42 (3%) reported ≥2 symptoms. Thirty-nine (2.9%) were suspected COVID-19 cases and three (0.2%) were suspected VHF cases from different regions of Uganda. Among 5,582 pilgrims who sought medical care from tents, 628 (11.3%) had suspected COVID-19 and one had suspected VHF. Almost one in fifty pilgrims at the 2022 Uganda Martyrs' commemoration had at least one symptom of COVID-19 or VHF. Intensified syndromic surveillance and planned laboratory testing capacity at mass gatherings is important for early detection of public health emergencies that could stem from such events.

7.
Front Neurosci ; 17: 1237176, 2023.
Article in English | MEDLINE | ID: mdl-37662111

ABSTRACT

Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both in vitro and in vivo. Expressing the developmental transcription factor Neurogenin2 (Ngn2) in OPCs isolated from adult rat cortex resulted in their expression of early neuronal lineage markers and genes while downregulating expression of OPC markers and genes. Ngn2 induced progression through a neuronal lineage to express mature neuronal markers and functional activity as glutamatergic neurons. In vivo retroviral gene delivery of Ngn2 to naive adult rat cortex ensured restricted targeting to proliferating OPCs. Ngn2 expression in OPCs resulted in their lineage re-specification and transition through an immature neuronal morphology into mature pyramidal cortical neurons with spiny dendrites, axons, synaptic contacts, and subtype specification matching local cytoarchitecture. Lineage re-specification of rat cortical OPCs occurred without prior injury, demonstrating these glial progenitor cells need not be put into a reactive state to achieve lineage reprogramming. These results show it may be feasible to precisely engineer additional neurons directly in adult cerebral cortex for experimental study or potentially for therapeutic use to modify dysfunctional or damaged circuitry.

8.
J Neurosurg Case Lessons ; 6(2)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37458360

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) can be a life-changing intervention for patients with Parkinson's disease (PD), but its success is largely dependent on precise lead placement. The subthalamic nucleus (STN) is one of the most common surgical targets of DBS, but the close anatomical and physiological resemblance of the STN to the mediocaudal red nucleus renders these landmarks difficult to distinguish. OBSERVATIONS: We present an atypical case in which targeted localization of the STN resulted in symptoms pathognomonic of rubrospinal tract (RST) stimulation. A 79-year-old female with a 12-year history of right-hand resting tremor due to medically refractory PD presented for asleep bilateral STN-DBS surgery. Right STN intraoperative testing revealed left hand and elbow flexion contractures, initially suggestive of corticospinal tract activation, despite imaging studies demonstrating reasonable lead placement in the central dorsolateral STN. The lead was moved anteromedially near the medial border of the STN, but stimulation at this location revealed similar but more robust flexor hand and arm contractures, without any extraocular muscle involvement. Thus, activation of the RST was suspected. LESSONS: Isolated activation of the RST is possible during STN-DBS surgery. Its identification can help avoid false localization and suboptimal lead placement.

9.
Article in English | MEDLINE | ID: mdl-37229146

ABSTRACT

Stroke is a debilitating neurovascular injury that those effects hundreds of thousands of Americans each year. Despite the high prevalence, disease morbidity and mortality, options for stroke intervention and rehabilitation are still limited. Stem cells have shown promise in stroke treatment due to their ability to self-renew and differentiate into different cell types. The primary sources of stem cells used today are bone marrow and fetal brain tissue, with mesenchymal stem cells, bone marrow stem cells and neural stem cells being particularly well-studied. By secreting therapeutic and neurogenic substances they are hypothesized to help foster recovery at the site of injury. Delivery mechanisms for stem cell therapy include intracerebral, intra-arterial, intraperitoneal, intravenous, intraventricular and intranasal routes with radiographic imaging now being used to monitor the progress of stem cell therapies. Stem cell implants have been found to be safe but optimal treatment strategies are still being established with several promising studies underway. Future efforts should continue to focus on improving efficacy, exploring alternative stem cell sources, enhancing migration capability and survival and educating stroke patients on the benefits and risks of stem cell therapy.

10.
Article in English | MEDLINE | ID: mdl-36848305

ABSTRACT

Innovation is central to neurosurgery and has dramatically increased over the last twenty years. Although the specialty innovates as a whole, only 3-4.7% of practicing neurosurgeons hold patents. Various roadblocks to innovation impede this process such as lack of understanding, increasing regulatory complexity, and lack of funding. Newly emerging technologies allow us to understand how to innovate and how to learn from other medical specialties. By further understanding the process of innovation, and the funding that supports it, Neurosurgery can continue to hold innovation as one of its's central tenets.

11.
Nat Neurosci ; 23(5): 615-624, 2020 05.
Article in English | MEDLINE | ID: mdl-32284607

ABSTRACT

Hexanucleotide expansions in C9orf72, which encodes a predicted guanine exchange factor, are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although repeat expansion has been established to generate toxic products, mRNAs encoding the C9ORF72 protein are also reduced in affected individuals. In this study, we tested how C9ORF72 protein levels affected repeat-mediated toxicity. In somatic transgenic mice expressing 66 GGGGCC repeats, inactivation of one or both endogenous C9orf72 alleles provoked or accelerated, respectively, early death. In mice expressing a C9orf72 transgene with 450 repeats that did not encode the C9ORF72 protein, inactivation of one or both endogenous C9orf72 alleles exacerbated cognitive deficits, hippocampal neuron loss, glial activation and accumulation of dipeptide-repeat proteins from translation of repeat-containing RNAs. Reduced C9ORF72 was shown to suppress repeat-mediated elevation in autophagy. These efforts support a disease mechanism in ALS/FTD resulting from reduced C9ORF72, which can lead to autophagy deficits, synergizing with repeat-dependent gain of toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Animals , DNA Repeat Expansion/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
12.
Anal Chem ; 91(15): 10016-10025, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31246004

ABSTRACT

DNA and RNA biomarkers have not progressed beyond the automated specialized clinic due to failure in the reproducibility necessary to standardize robust and rapid nucleic acid detection at the point of care, where health outcomes can be most improved by early-stage diagnosis and precise monitoring of therapy and disease prognosis. We demonstrate here a new analytical platform to meet this challenge using functional 3D hydrogels engineered from peptide and oligonucleotide building blocks to provide sequence-specific, PCR-free fluorescent detection of unlabeled nucleic acid sequences. We discriminated at picomolar detection limits (<7 pM) "perfect-match" from mismatched sequences, down to a single nucleotide mutation, buried within longer lengths of the target. Detailed characterization by NMR, TEM, mass spectrometry, and rheology provided the structural understanding to design these hybrid peptide-oligonucleotide biomaterials with the desired sequence sensitivity and detection limit. We discuss the generic design, which is based on a highly predictable secondary structure of the oligonucleotide components, as a platform to detect genetic abnormalities and to screen for pathogenic conditions at the level of both DNA (e.g., SNPs) and RNA (messenger, micro, and viral genomic RNA).


Subject(s)
Hydrogels/chemistry , Nucleic Acids/analysis , Polymerase Chain Reaction/methods , Base Pair Mismatch , Base Sequence , Limit of Detection , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism
13.
Mon Not R Astron Soc ; 490(2): 2760-2778, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32616967

ABSTRACT

It is well known that the polarized continuum emission from magnetically aligned dust grains is determined to a large extent by local magnetic field structure. However, the observed significant anticorrelation between polarization fraction and column density may be strongly affected, perhaps even dominated by variations in grain alignment efficiency with local conditions, in contrast to standard assumptions of a spatially homogeneous grain alignment efficiency. Here we introduce a generic way to incorporate heterogeneous grain alignment into synthetic polarization observations of molecular clouds (MCs), through a simple model where the grain alignment efficiency depends on the local gas density as a power law. We justify the model using results derived from radiative torque alignment theory. The effects of power-law heterogeneous alignment models on synthetic observations of simulated MCs are presented. We find that the polarization fraction-column density correlation can be brought into agreement with observationally determined values through heterogeneous alignment, though there remains degeneracy with the relative strength of cloud-scale magnetized turbulence and the mean magnetic field orientation relative to the observer. We also find that the dispersion in polarization angles-polarization fraction correlation remains robustly correlated despite the simultaneous changes to both observables in the presence of heterogeneous alignment.

14.
Chem Commun (Camb) ; 52(40): 6697-700, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27117274

ABSTRACT

We report here the first experimental evidence of a self-assembling three-dimensional (3D) peptide hydrogel, with recognition motifs immobilized on the surface of fibres capable of sequence-specific oligonucleotide detection. These systems have the potential to be further developed into diagnostic and prognostic tools in human pathophysiology.


Subject(s)
Biosensing Techniques , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Immobilized Nucleic Acids/chemistry , Peptides/chemical synthesis , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Peptides/chemistry , Surface Properties
15.
Ultrason Sonochem ; 31: 157-62, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964936

ABSTRACT

In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.


Subject(s)
Diatoms/chemistry , Ultrasonics
16.
Soft Matter ; 12(6): 1915-23, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26702608

ABSTRACT

Two complementary ß-sheet-forming decapeptides have been created that form binary self-repairing hydrogels upon combination of the respective free-flowing peptide solutions at pH 7 and >0.28 wt%. The component peptides showed little structure separately but formed extended ß-sheet fibres upon mixing, which became entangled to produce stiff hydrogels. Microscopy revealed two major structures; thin fibrils with a twisted or helical appearance and with widths comparable to the predicted lengths of the peptides within a ß-sheet, and thicker, longer, interwoven fibres that appear to comprise laterally-packed fibrils. A range of gel stiffnesses (G' from 0.05 to 100 kPa) could be attained in this system by altering the assembly conditions, stiffnesses that cover the rheological properties desirable for cell culture scaffolds. Doping in a RGD-tagged component peptide at 5 mol% improved 3T3 fibroblast attachment and viability compared to hydrogel fibres without RGD functionalisation.


Subject(s)
Hydrogels/chemistry , Oligopeptides/chemistry , Tissue Scaffolds/chemistry , Amyloid/chemistry , Protein Structure, Secondary , Rheology
17.
Ultrason Sonochem ; 24: 165-71, 2015 May.
Article in English | MEDLINE | ID: mdl-25465879

ABSTRACT

In this work the effect of ultrasonic waves on suspensions of Chlamydomonas concordia and Dunaliella salina have been investigated at frequencies of 20, 585, 864 and 1146 kHz and at different acoustic powers. Results showed that the reduction in algal numbers was dependent on both frequency and acoustic power. The order of efficiency of the ultrasonic disruption of C. concordia at different frequencies was 20 < 580 < 864 < 1146 kHz, and for D. salina was 20< 580 ≅ 864 ⩽ 1146 kHz. It is clear that high-frequency sonication is more effective than conventional low-frequency sonication for the disruption of cells for both species. Results showed that suitable disruption frequencies for each algae were associated with the mechanical properties of the cell. The frequency dependence of the efficiency of algae disruption on the mechanical resonances of both the algae cell is discussed in terms of bubble oscillation in an ultrasonic field.


Subject(s)
Chlorophyta/physiology , Sonication/methods , Ultrasonic Waves , Species Specificity
18.
Ultrason Sonochem ; 20(2): 715-21, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23084791

ABSTRACT

The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26g/L Na(2)SO(4) and 30V electrical voltages at 25°C in 1h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.

19.
Biophys J ; 98(8): 1668-76, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20409488

ABSTRACT

Interest in the design of peptide-based fibrous materials is growing because it opens possibilities to explore fundamental aspects of peptide self-assembly and to exploit the resulting structures--for example, as scaffolds for tissue engineering. Here we investigate the assembly pathway of self-assembling fibers, a rationally designed alpha-helical coiled-coil system comprising two peptides that assemble on mixing. The dimensions spanned by the peptides and final structures (nanometers to micrometers), and the timescale over which folding and assembly occur (seconds to hours), necessitate a multi-technique approach employing spectroscopy, analytical ultracentrifugation, electron and light microscopy, and protein design to produce a physical model. We show that fibers form via a nucleation and growth mechanism. The two peptides combine rapidly (in less than seconds) to form sticky ended, partly helical heterodimers. A lag phase follows, on the order of tens of minutes, and is concentration-dependent. The critical nucleus comprises six to eight partially folded dimers. Growth is then linear in dimers, and subsequent fiber growth occurs in hours through both elongation and thickening. At later times (several hours), fibers grow predominantly through elongation. This kinetic, biomolecular description of the folding-and-assembly process allows the self-assembling fiber system to be manipulated and controlled, which we demonstrate through seeding experiments to obtain different distributions of fiber lengths. This study and the resulting mechanism we propose provide a potential route to achieving temporal control of functional fibers with future applications in biotechnology and nanoscale science and technology.


Subject(s)
Protein Structure, Secondary , Proteins/chemistry , Circular Dichroism , Models, Molecular , Mutagenesis/genetics , Peptides/chemistry , Peptides/metabolism , Proline/genetics , Protein Folding , Proteins/metabolism , Proteins/ultrastructure
20.
J Am Chem Soc ; 131(37): 13305-14, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19715308

ABSTRACT

Flow linear dichroism (LD) spectroscopy provides information on the orientation of molecules in solution and hence on the relative orientation of parts of molecules. Long molecules such as fibrous proteins can be aligned in Couette flow cells and characterized using LD. We have measured using Couette flow and calculated from first principles the LD of proteins representing prototypical secondary structure classes: a self-assembling fiber and tropomyosin (all-alpha-helical), FtsZ (an alphabeta protein), an amyloid fibril (beta-sheet), and collagen [poly(proline)II helices]. The combination of calculation and experiment allows elucidation of the protein orientation in the Couette flow and the orientation of chromophores within the protein fibers.


Subject(s)
Proteins/chemistry , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Proteins/metabolism , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL