Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ear Hear ; 42(1): 130-141, 2021.
Article in English | MEDLINE | ID: mdl-32769434

ABSTRACT

OBJECTIVES: Tinnitus is the perception of sound in the absence of an external physical sound source, for some people it can severely reduce the quality of life. Acoustic residual inhibition (ARI) is a suppression of tinnitus following the cessation of a sound. The present study investigated the effect of ARI on brain activity measured using EEG. DESIGN: Thirty adult participants (mean age of 58 years) experiencing chronic tinnitus (minimum 2 years) participated. Participants were presented broad band noise at 10 dB above minimum masking level (1 min followed by 4 min of silence, 4 times) counterbalanced with a control treatment of broad band noise at threshold (1 min followed by 4 min of silence, 4 times) while 64-channel EEG was simultaneously recorded. Tinnitus loudness was measured using a 9-point tinnitus loudness rating scale. RESULTS: The ARI stimulation resulted in a self-reported reduction in tinnitus loudness in 17 of the 30 participants. Tinnitus rating reduced following stimulation but gradually returned to near baseline during 4 min of silence post sound exposure; successive sound exposures resulted in lower loudness ratings. No significant reductions in loudness rating were found with the control stimulation. The EEG showed increases in power spectral density, particularly in the alpha and gamma bands, during ARI compared to the control periods. CONCLUSIONS: These results contribute to the understanding of ARI and tinnitus. We recommend that there be a closer examination of the relationship between onset and offset of sound in both tinnitus and nontinnitus control participants to ascertain if EEG changes seen with ARI relate to tinnitus suppression or general postsound activity.


Subject(s)
Tinnitus , Acoustic Stimulation , Adult , Electroencephalography , Humans , Middle Aged , Quality of Life , Sound
2.
Front Hum Neurosci ; 13: 22, 2019.
Article in English | MEDLINE | ID: mdl-30828292

ABSTRACT

Background: Long-term potentiation (LTP) is recognised as a core neuronal process underlying long-term memory. However, a direct relationship between LTP and human memory performance is yet to be demonstrated. The first aim of the current study was thus to assess the relationship between LTP and human long-term memory performance. With this also comes an opportunity to explore factors thought to mediate the relationship between LTP and long-term memory. The second aim of the current study was to explore the relationship between LTP and memory in groups differing with respect to brain-derived neurotrophic factor (BDNF) Val66Met; a single-nucleotide polymorphism (SNP) implicated in memory function. Methods: Participants were split into three genotype groups (Val/Val, Val/Met, Met/Met) and were presented with both an EEG paradigm for inducing LTP-like enhancements of the visually-evoked response, and a test of visual memory. Results: The magnitude of LTP 40 min after induction was predictive of long-term memory performance. Additionally, the BDNF Met allele was associated with both reduced LTP and reduced memory performance. Conclusions: The current study not only presents the first evidence for a relationship between sensory LTP and human memory performance, but also demonstrates how targeting this relationship can provide insight into factors implicated in variation in human memory performance. It is anticipated that this will be of utility to future clinical studies of disrupted memory function.

SELECTION OF CITATIONS
SEARCH DETAIL
...