Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38701023

ABSTRACT

Over 400 million years old, scorpions represent an ancient group of arachnids and one of the first animals to adapt to life on land. Presently, the lack of available genomes within scorpions hinders research on their evolution. This study leverages ultralong nanopore sequencing and Pore-C to generate the first chromosome-level assembly and annotation for the desert hairy scorpion, Hadrurus arizonensis. The assembled genome is 2.23 Gb in size with an N50 of 280 Mb. Pore-C scaffolding reoriented 99.6% of bases into nine chromosomes and BUSCO identified 998 (98.6%) complete arthropod single copy orthologs. Repetitive elements represent 54.69% of the assembled bases, including 872,874 (29.39%) LINE elements. A total of 18,996 protein-coding genes and 75,256 transcripts were predicted, and extracted protein sequences yielded a BUSCO score of 97.2%. This is the first genome assembled and annotated within the family Hadruridae, representing a crucial resource for closing gaps in genomic knowledge of scorpions, resolving arachnid phylogeny, and advancing studies in comparative and functional genomics.


Subject(s)
Genome , Scorpions , Animals , Scorpions/genetics , Chromosomes/genetics , Phylogeny , Molecular Sequence Annotation , Evolution, Molecular
2.
J Exp Biol ; 225(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36082938

ABSTRACT

Animals evolve mechanisms to send and receive communication signals through multiple sensory channels during crucial behavioral contexts such as aggression and reproduction. This ensures the transmission of important context-dependent signals that supply either the same (redundant) or different (non-redundant) information to the receiver. Despite the importance of multimodal communication, there are relatively few species in which information on sender signals and receiver responses are known. Further, little is known about where context-dependent unimodal and multimodal information is processed in the brain to produce adaptive behaviors. We used the African cichlid, Astatotilapia burtoni, to investigate how unimodal and multimodal signals are processed within the female brain in a reproductive context. During courtship, dominant males produce low frequency sounds in conjunction with visual displays (quivers) directed towards receptive gravid females. We compared affiliation behaviors and neural activation patterns in gravid females exposed to visual, acoustic and visual-acoustic signals from courting dominant males. Females displayed reduced affiliation in auditory-only conditions, but similar affiliation during visual and visual-acoustic conditions, demonstrating that visual-acoustic signaling from males is non-redundant but vision dominates. Using the neural activation marker cfos, we identified differential activation in specific socially relevant brain nuclei between unimodal and multimodal conditions and distinct neural co-activation networks associated with each sensory context. Combined with our previous work on chemosensory signaling, we propose that A. burtoni represents a valuable vertebrate model for studying context-dependent behavioral and neural decision making associated with non-redundant multimodal communication.


Subject(s)
Cichlids , Courtship , Acoustics , Aggression/physiology , Animals , Cichlids/physiology , Female , Male , Reproduction/physiology
3.
Horm Behav ; 139: 105110, 2022 03.
Article in English | MEDLINE | ID: mdl-35065406

ABSTRACT

Position in a dominance hierarchy profoundly impacts group members' survival, health, and reproductive success. Thus, understanding the mechanisms that regulate or are associated with an individuals' social position is important. Across taxa, various endocrine and neuroendocrine signaling systems are implicated in the control of social rank. Cichlid fishes, with their often-limited resources of food, shelter, and mates that leads to competition, have provided important insights on the proximate and ultimate mechanisms related to establishment and maintenance of dominance hierarchies. Here we review the existing information on the relationships between endocrine (e.g., circulating hormones, gonadal and other tissue measures) and neuroendocrine (e.g., central neuropeptides, biogenic amines, steroids) systems and dominant and subordinate social rank in male cichlids. Much of the current literature is focused on only a few representative cichlids, particularly the African Astatotilapia burtoni, and several other African and Neotropical species. Many hormonal regulators show distinct differences at multiple biological levels between dominant and subordinate males, but generalizations are complicated by variations in experimental paradigms, methodological approaches, and in the reproductive and parental care strategies of the study species. Future studies that capitalize on the diversity of hierarchical structures among cichlids should provide insights towards better understanding the endocrine and neuroendocrine mechanisms contributing to social rank. Further, examination of this topic in cichlids will help reveal the selective pressures driving the evolution of endocrine-related phenotypic traits that may facilitate an individual's ability to acquire and maintain a specific social rank to improve survival and reproductive success.


Subject(s)
Cichlids , Animals , Cichlids/physiology , Hierarchy, Social , Hormones , Male , Neurosecretory Systems , Social Dominance , Social Status
SELECTION OF CITATIONS
SEARCH DETAIL
...