Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(26): E3706-15, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27303042

ABSTRACT

Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt-Hogg-Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1 Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51-like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , B-Lymphocytes/cytology , Cardiomyopathies/metabolism , Carrier Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , AMP-Activated Protein Kinases/genetics , Animals , B-Lymphocytes/enzymology , B-Lymphocytes/metabolism , Cardiomyopathies/genetics , Carrier Proteins/metabolism , Cell Count , Humans , Mice , Mice, Inbred C57BL , Mutation , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics
2.
Eur J Immunol ; 45(9): 2484-93, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26173808

ABSTRACT

Expression of mouse C-type lectin-like receptor 2 (CLEC-2) has been reported on circulating CD11b(high) Gr-1(high) myeloid cells and dendritic cells (DCs) under basal conditions, as well as on a variety of leucocyte subsets following inflammatory stimuli or in vitro cell culture. However, previous studies assessing CLEC-2 expression failed to use CLEC-2-deficient mice as negative controls and instead relied heavily on single antibody clones. Here, we generated CLEC-2-deficient adult mice using two independent approaches and employed two anti-mouse CLEC-2 antibody clones to investigate surface expression on hematopoietic cells from peripheral blood and secondary lymphoid organs. We rule out constitutive CLEC-2 expression on resting DCs and show that CLEC-2 is upregulated in response to LPS-induced systemic inflammation in a small subset of activated DCs isolated from the mesenteric lymph nodes but not the spleen. Moreover, we demonstrate for the first time that peripheral blood B lymphocytes present exogenously derived CLEC-2 and suggest that both circulating B lymphocytes and CD11b(high) Gr-1(high) myeloid cells lose CLEC-2 following entry into secondary lymphoid organs. These results have significant implications for our understanding of CLEC-2 physiological functions.


Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Lectins, C-Type/genetics , Myeloid Cells/immunology , Animals , Antibodies, Monoclonal/pharmacology , B-Lymphocytes/pathology , Blood Platelets/immunology , Blood Platelets/pathology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Movement/immunology , Dendritic Cells/pathology , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/deficiency , Lipopolysaccharides , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice , Mice, Transgenic , Myeloid Cells/pathology , Organ Specificity , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Signal Transduction , Spleen/immunology , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...