Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Nat Commun ; 12(1): 6875, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824244

ABSTRACT

Changing biodiversity alters ecosystem functioning in nature, but the degree to which this relationship depends on the taxonomic identities rather than the number of species remains untested at broad scales. Here, we partition the effects of declining species richness and changing community composition on fish community biomass across >3000 coral and rocky reef sites globally. We find that high biodiversity is 5.7x more important in maximizing biomass than the remaining influence of other ecological and environmental factors. Differences in fish community biomass across space are equally driven by both reductions in the total number of species and the disproportionate loss of larger-than-average species, which is exacerbated at sites impacted by humans. Our results confirm that sustaining biomass and associated ecosystem functions requires protecting diversity, most importantly of multiple large-bodied species in areas subject to strong human influences.


Subject(s)
Biodiversity , Biomass , Coral Reefs , Fishes/physiology , Animals , Body Size , Conservation of Natural Resources , Ecosystem , Fishes/classification , Humans
3.
Mar Pollut Bull ; 164: 111922, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33632532

ABSTRACT

Coral reefs in the tropical Pacific region are exposed to a range of anthropogenic local pressures. Climate change is exacerbating local impacts, causing unprecedented declines in coral reef habitats and bringing negative socio-economic consequences to Pacific communities who depend heavily on coral reefs for food, income and livelihoods. Continued increases in greenhouse gas emissions will drive future climate change, which will accelerate coral reef degradation. Traditional systems of resource governance in Pacific island nations provide a foundation to address local pressures and build reef resilience to climate change. Management and adaptation options should build on the regional diversity of governance systems and traditional knowledge to support community-based initiatives and cross-sectoral cooperation to address local pressures and minimize climate change impacts. Such an inclusive approach will offer enhanced opportunities to develop and implement transformative adaptation solutions, particularly in remote and regional areas where centralized management does not extend.


Subject(s)
Anthozoa , Coral Reefs , Animals , Climate Change , Conservation of Natural Resources , Ecosystem , Pacific Islands
4.
Trends Ecol Evol ; 34(4): 342-354, 2019 04.
Article in English | MEDLINE | ID: mdl-30777295

ABSTRACT

Long-distance (>40-km) dispersal from marine reserves is poorly documented; yet, it can provide essential benefits such as seeding fished areas or connecting marine reserves into networks. From a meta-analysis, we suggest that the spatial scale of marine connectivity is underestimated due to the limited geographic extent of sampling designs. We also found that the largest marine reserves (>1000km2) are the most isolated. These findings have important implications for the assessment of evolutionary, ecological, and socio-economic long-distance benefits of marine reserves. We conclude that existing methods to infer dispersal should consider the up-to-date genomic advances and also expand the spatial scale of sampling designs. Incorporating long-distance connectivity in conservation planning will contribute to increase the benefits of marine reserve networks.


Subject(s)
Conservation of Natural Resources , Ecology , Animals , Fishes , Larva
5.
Ecol Appl ; 29(1): e01820, 2019 01.
Article in English | MEDLINE | ID: mdl-30550634

ABSTRACT

Instantaneous implementation of systematic conservation plans at regional scales is rare. More typically, planned actions are applied incrementally over periods of years or decades. During protracted implementation, the character of the connected ecological system will change as a function of external anthropogenic pressures, local metapopulation processes, and environmental fluctuations. For heavily exploited systems, habitat quality will deteriorate as the plan is implemented, potentially influencing the schedule of protected area implementation necessary to achieve conservation objectives. Understanding the best strategy to adopt for applying management within a connected environment is desirable, especially given limited conservation resources. Here, we model the sequential application of no-take marine protected areas (MPAs) in the central Philippines within a metapopulation framework, using a range of network-based decision rules. The model was based on selecting 33 sites for protection from 101 possible sites over a 35-yr period. The graph-theoretic network criteria to select sites for protection included PageRank, maximum degree, closeness centrality, betweenness centrality, minimum degree, random, and historical events. We also included a dynamic strategy called colonization-extinction rate that was updated every year based on the changing capacity of each site to produce and absorb larvae. Each rule was evaluated in the context of achieving the maximum metapopulation mean lifetime at the conclusion of the implementation phase. MPAs were designated through the alteration of the extinction risk parameter. The highest ranked criteria were PageRank while the actual implementation from historical records ranked lowest. Our results indicate that protecting the sites ranked highest with regard to larval supply is likely to yield the highest benefit for fish abundance and fish metapopulation persistence. Model results highlighted the benefits of including network processes in conservation planning.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Fishes , Philippines , Population Dynamics
6.
Ecol Evol ; 8(23): 11842-11856, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30598781

ABSTRACT

A relic inshore reef ecosystem adjacent to the Fijian capital of Suva and another remote inshore reef were monitored monthly from July 2014 to July 2015 for coral recruitment, sedimentation rates, coral cover, temperature, and light intensity. Despite a major sewage spill in Suva Harbour in December 2014, the municipal inshore site exposed to constant anthropogenic activity, recorded no significant differences in coral spat abundance (except for the family Poritidae) on artificial substrata compared to the remote inshore site. Total yearly spat abundance was 106 on municipal reef and 132 on remote reef, while average daily sediment trap collection rates (g cm2/day) were significantly higher in the municipal site for the entire duration of monitoring. Total annual particulate organic matter content in sediment was also significantly higher in the municipal site (107.51 g cm2), compared to the remote site (43.37 g cm2). Mean light intensity was significantly lower for the municipal site (69.81 lum/ft2) compared to the remote site (239.26 lum/ft2), with Photosynthetically Active Radiation also lower for the former (800-1,066.66 µmol m-2 s-1) compared to the latter (3,266.66-3,600 µmol m-2 s-1). The lack of significant differences in coral spat recruitment rates suggests that settling larvae may be unable to distinguish between sub-optimal and optimal sites probably as a consequence of interference with coral settlement cues arising from anthropogenic development.

7.
Appl Netw Sci ; 3(1): 11, 2018.
Article in English | MEDLINE | ID: mdl-30839779

ABSTRACT

In recent years, parallel developments in disparate disciplines have focused on what has come to be termed connectivity; a concept used in understanding and describing complex systems. Conceptualisations and operationalisations of connectivity have evolved largely within their disciplinary boundaries, yet similarities in this concept and its application among disciplines are evident. However, any implementation of the concept of connectivity carries with it both ontological and epistemological constraints, which leads us to ask if there is one type or set of approach(es) to connectivity that might be applied to all disciplines. In this review we explore four ontological and epistemological challenges in using connectivity to understand complex systems from the standpoint of widely different disciplines. These are: (i) defining the fundamental unit for the study of connectivity; (ii) separating structural connectivity from functional connectivity; (iii) understanding emergent behaviour; and (iv) measuring connectivity. We draw upon discipline-specific insights from Computational Neuroscience, Ecology, Geomorphology, Neuroscience, Social Network Science and Systems Biology to explore the use of connectivity among these disciplines. We evaluate how a connectivity-based approach has generated new understanding of structural-functional relationships that characterise complex systems and propose a 'common toolbox' underpinned by network-based approaches that can advance connectivity studies by overcoming existing constraints.

8.
Sci Adv ; 3(10): e1700419, 2017 10.
Article in English | MEDLINE | ID: mdl-29057321

ABSTRACT

Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.


Subject(s)
Aquatic Organisms , Biodiversity , Animals , Conservation of Natural Resources , Ecosystem , Environment , Geography , Models, Theoretical , Oceans and Seas , Population Density , Population Dynamics
9.
Bioscience ; 67(2): 134-146, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28596615

ABSTRACT

Reporting progress against targets for international biodiversity agreements is hindered by a shortage of suitable biodiversity data. We describe a cost-effective system involving Reef Life Survey citizen scientists in the systematic collection of quantitative data covering multiple phyla that can underpin numerous marine biodiversity indicators at high spatial and temporal resolution. We then summarize the findings of a continental- and decadal-scale State of the Environment assessment for rocky and coral reefs based on indicators of ecosystem state relating to fishing, ocean warming, and invasive species and describing the distribution of threatened species. Fishing impacts are widespread, whereas substantial warming-related change affected some regions between 2005 and 2015. Invasive species are concentrated near harbors in southeastern Australia, and the threatened-species index is highest for the Great Australian Bight and Tasman Sea. Our approach can be applied globally to improve reporting against biodiversity targets and enhance public and policymakers' understanding of marine biodiversity trends.

11.
Ann Rev Mar Sci ; 8: 435-61, 2016.
Article in English | MEDLINE | ID: mdl-26253270

ABSTRACT

In an era of rapid global change, conservation managers urgently need improved tools to track and counter declining ecosystem conditions. This need is particularly acute in the marine realm, where threats are out of sight, inadequately mapped, cumulative, and often poorly understood, thereby generating impacts that are inefficiently managed. Recent advances in macroecology, statistical analysis, and the compilation of global data will play a central role in improving conservation outcomes, provided that global, regional, and local data streams can be integrated to produce locally relevant and interpretable outputs. Progress will be assisted by (a) expanded rollout of systematic surveys that quantify species patterns, including some carried out with help from citizen scientists; (b) coordinated experimental research networks that utilize large-scale manipulations to identify mechanisms underlying these patterns;


Subject(s)
Conservation of Natural Resources/methods , Ecology/methods , Ecosystem , Marine Biology , Oceans and Seas
12.
Nature ; 528(7580): 88-92, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26560025

ABSTRACT

A critical assumption underlying projections of biodiversity change associated with global warming is that ecological communities comprise balanced mixes of warm-affinity and cool-affinity species which, on average, approximate local environmental temperatures. Nevertheless, here we find that most shallow water marine species occupy broad thermal distributions that are aggregated in either temperate or tropical realms. These distributional trends result in ocean-scale spatial thermal biases, where communities are dominated by species with warmer or cooler affinity than local environmental temperatures. We use community-level thermal deviations from local temperatures as a form of sensitivity to warming, and combine these with projected ocean warming data to predict warming-related loss of species from present-day communities over the next century. Large changes in local species composition appear likely, and proximity to thermal limits, as inferred from present-day species' distributional ranges, outweighs spatial variation in warming rates in contributing to predicted rates of local species loss.


Subject(s)
Aquatic Organisms/physiology , Biodiversity , Global Warming , Seawater , Temperature , Acclimatization/physiology , Animals , Coral Reefs , Fishes/physiology , Geographic Mapping , Invertebrates/physiology , Phylogeny , Seasons , Species Specificity , Tropical Climate
13.
PLoS One ; 10(10): e0140270, 2015.
Article in English | MEDLINE | ID: mdl-26461104

ABSTRACT

Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Fishes/physiology , Animals , Biomass , Confidence Intervals , Geography , Tropical Climate
14.
Ambio ; 44 Suppl 1: S138-48, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25576288

ABSTRACT

Understanding how governance structures align to ecological processes in a landscape is critical for effective management of ecological resources. Ecological resources are not independent from each other, instead they are interconnected, and their well-being is often critically dependent on upholding ecological connectivity, especially in times of change and disturbances. Coordination and collaboration among managing actors, each managing their own piece of the puzzle, is therefore essentially a requirement for effective management. We present a conceptual model that includes ecological resources, managing and coordinating actors, along with an explicit representation on how all these entities are connected to each other. We apply this model to 25 municipalities that manage 408 wetlands in central Sweden. The study shows a good social and ecological alignment, however with a high prevalence for coordination through third parties. We discuss this pattern emergence, its potential implications, and examine which municipalities adopt these coordinating functions.


Subject(s)
Ecology , Wetlands , Conservation of Natural Resources
15.
Nature ; 506(7487): 216-20, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24499817

ABSTRACT

In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km(2)), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Ecology/statistics & numerical data , Ecosystem , Fisheries/statistics & numerical data , Fishes/physiology , Animals , Aquatic Organisms/physiology , Biodiversity , Biomass , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Coral Reefs , Ecology/economics , Ecology/legislation & jurisprudence , Ecology/methods , Fisheries/legislation & jurisprudence , Fisheries/standards , Marine Biology/economics , Marine Biology/legislation & jurisprudence , Marine Biology/methods , Marine Biology/statistics & numerical data , Seawater , Sharks , Silicon Dioxide , Time Factors
16.
Nature ; 501(7468): 539-42, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24067714

ABSTRACT

Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of ecosystem functions varies over large scales, and imply that in tropical regions, which have higher numbers of species, each species contributes proportionally less to community-level ecological processes on average than species in temperate regions. Metrics of ecological function usefully complement metrics of species diversity in conservation management, including when identifying planning priorities and when tracking changes to biodiversity values.


Subject(s)
Biodiversity , Fishes/classification , Geography , Animals , Coral Reefs , Pacific Ocean , Population Density , Species Specificity , Temperature , Tropical Climate
17.
PLoS One ; 8(9): e73800, 2013.
Article in English | MEDLINE | ID: mdl-24040076

ABSTRACT

Twenty-five years of Australian marine bioresources collecting and research by the Australian Institute of Marine Science (AIMS) has explored the breadth of latitudinally and longitudinally diverse marine habitats that comprise Australia's ocean territory. The resulting AIMS Bioresources Library and associated relational database integrate biodiversity with bioactivity data, and these resources were mined to retrospectively assess biogeographic, taxonomic and phylogenetic patterns in cytotoxic, antimicrobial, and central nervous system (CNS)-protective bioactivity. While the bioassays used were originally chosen to be indicative of pharmaceutically relevant bioactivity, the results have qualified ecological relevance regarding secondary metabolism. In general, metazoan phyla along the deuterostome phylogenetic pathway (eg to Chordata) and their ancestors (eg Porifera and Cnidaria) had higher percentages of bioactive samples in the assays examined. While taxonomy at the phylum level and higher-order phylogeny groupings helped account for observed trends, taxonomy to genus did not resolve the trends any further. In addition, the results did not identify any biogeographic bioactivity hotspots that correlated with biodiversity hotspots. We conclude with a hypothesis that high-level phylogeny, and therefore the metabolic machinery available to an organism, is a major determinant of bioactivity, while habitat diversity and ecological circumstance are possible drivers in the activation of this machinery and bioactive secondary metabolism. This study supports the strategy of targeting phyla from the deuterostome lineage (including ancestral phyla) from biodiverse marine habitats and ecological niches, in future biodiscovery, at least that which is focused on vertebrate (including human) health.


Subject(s)
Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Calcium Channel Blockers/pharmacology , Ecology/methods , Enzyme Inhibitors/pharmacology , Animals , Anti-Infective Agents/isolation & purification , Australia , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Bayes Theorem , Biological Products/isolation & purification , Calcium Channel Blockers/isolation & purification , Calcium Channels, N-Type/metabolism , Candida albicans/drug effects , Candida albicans/growth & development , Cell Line, Tumor , Cell Survival/drug effects , Chordata/classification , Chordata/genetics , Chordata/metabolism , Cluster Analysis , Enzyme Inhibitors/isolation & purification , Geography , Humans , Marine Biology/methods , Microbial Sensitivity Tests , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/metabolism , Phaeophyceae/chemistry , Phaeophyceae/classification , Phaeophyceae/genetics , Phylogeny , Rhodophyta/chemistry , Rhodophyta/classification , Rhodophyta/genetics
18.
Mol Ecol ; 20(23): 4899-914, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22026459

ABSTRACT

Effective management of reef corals requires knowledge of the extent to which populations are open or closed and the scales over which genetic exchange occurs, information which is commonly derived from population genetic data. Such data are sparse for Great Barrier Reef (GBR) corals and other organisms, with the studies that are available being mostly based on a small number of sampling locations spanning only part of the GBR. Using 11 microsatellite loci, we genotyped 947 colonies of the reef-building coral Acropora millepora from 20 sites spanning almost the full length of the GBR (∼12° of latitude and ∼1550 km). The results show a major divide between the southernmost central to southern offshore populations and all other sampled populations. We interpret this divide as a signature of allopatric divergence in northern and southern refugia during the Pleistocene glaciations, from which the GBR was subsequently recolonized. Superimposed on this pattern is a cross-shelf genetic division, as well as a separation of inshore populations south of the Cape Clifton Front at ∼21.5-22°S. Most inshore populations north of this, as well as mid-shelf populations in the northern and far northern GBR, are open, exchanging recruits frequently. In contrast, inshore populations south of the Cape Clifton Front and offshore populations in the central and southern GBR are largely self-seeding, at least within the spatial resolution that was achieved given our sampling intensity. Populations that have been impacted by recent disturbance events causing extensive coral mortality show no evidence of reduced genetic diversity.


Subject(s)
Anthozoa/genetics , Genetic Variation , Genetics, Population , Animals , Australia , Bayes Theorem , Cluster Analysis , Coral Reefs , Genotype , Linkage Disequilibrium , Microsatellite Repeats , Models, Genetic
19.
PLoS One ; 5(8): e12431, 2010 Aug 30.
Article in English | MEDLINE | ID: mdl-20814570

ABSTRACT

BACKGROUND: Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. CONCLUSIONS/SIGNIFICANCE: Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.


Subject(s)
Anthozoa , Conservation of Natural Resources/economics , Investments , Animals , Budgets , Ecosystem , Oceans and Seas
20.
PLoS One ; 3(10): e3401, 2008.
Article in English | MEDLINE | ID: mdl-18852897

ABSTRACT

BACKGROUND: Understanding of the magnitude and direction of the exchange of individuals among geographically separated subpopulations that comprise a metapopulation (connectivity) can lead to an improved ability to forecast how fast coral reef organisms are likely to recover from disturbance events that cause extensive mortality. Reef corals that brood their larvae internally and release mature larvae are believed to show little exchange of larvae over ecological times scales and are therefore expected to recover extremely slowly from large-scale perturbations. METHODOLOGY/PRINCIPAL FINDINGS: Using analysis of ten DNA microsatellite loci, we show that although Great Barrier Reef (GBR) populations of the brooding coral, Seriatopora hystrix, are mostly self-seeded and some populations are highly isolated, a considerable amount of sexual larvae (up to approximately 4%) has been exchanged among several reefs 10 s to 100 s km apart over the past few generations. Our results further indicate that S. hystrix is capable of producing asexual propagules with similar long-distance dispersal abilities (approximately 1.4% of the sampled colonies had a multilocus genotype that also occurred at another sampling location), which may aid in recovery from environmental disturbances. CONCLUSIONS/SIGNIFICANCE: Patterns of connectivity in this and probably other GBR corals are complex and need to be resolved in greater detail through genetic characterisation of different cohorts and linkage of genetic data with fine-scale hydrodynamic models.


Subject(s)
Anthozoa/genetics , Genetics, Population , Population Dynamics , Animals , Ecosystem , Geography , Microsatellite Repeats , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...