Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Front Cardiovasc Med ; 10: 1264901, 2023.
Article in English | MEDLINE | ID: mdl-37900572

ABSTRACT

Background: Pituitary adenylate cyclase-activating polypeptide (PACAP) acts as an anti-atherogenic neuropeptide and plays an important role in cytoprotective, as well as inflammatory processes, and cardiovascular regulation. Therefore, the aim of this study is to investigate the regulatory effects of PACAP and its receptor VPAC1 in relation to inflammatory processes and lipid homeostasis in different macrophage (MΦ) subtypes. Methods: To investigate the role of PACAP deficiency in the pathogenesis of atherosclerosis under standard chow (SC) or cholesterol-enriched diet (CED) in vivo, PACAP-/- mice were crossbred with ApoE-/- to generate PACAP-/-/ApoE-/- mice. Lumen stenosis in the aortic arch and different MΦ-subtypes were analyzed in atherosclerotic plaques by quantitative immunohistochemistry. Undifferentiated bone marrow-derived cells (BMDC) from 30-weeks-old ApoE-/- and PACAP-/-/ApoE-/- mice were isolated, differentiated into BMDM1- and BMDM2-MΦ, and incubated with oxidized low-density lipoprotein (oxLDL). In addition, PMA-differentiated human THP-1 MΦ were further differentiated into M1-/M2-MΦ and subsequently treated with PACAP38, the VPAC1 agonist [(Ala11,22,28)VIP], the antagonist (PG 97-269), and/or oxLDL. Uptake/accumulation of oxLDL was analyzed by oxLDL-DyLight™488 and Bodipy™ 493/503. The mRNA expression was analyzed by qRT-PCR, protein levels by Western blot, and cytokine release by ELISA. Results: In vivo, after 30 weeks of SC, PACAP-/-/ApoE-/- mice showed increased lumen stenosis compared with ApoE-/- mice. In atherosclerotic plaques of PACAP-/-/ApoE-/- mice under CED, immunoreactive areas of VPAC1, CD86, and CD163 were increased compared with ApoE-/- mice. In vitro, VPAC1 protein levels were increased in PACAP-/-/ApoE-/- BMDM compared with ApoE-/- BMDM, resulting in increased TNF-α mRNA expression in BMDM1-MΦ and decreased TNF-α release in BMDM2-MΦ. Concerning lipid homeostasis, PACAP deficiency decreased the area of lipid droplets in BMDM1-/M2-MΦ with concomitant increasing adipose differentiation-related protein level. In THP-1 M1-/M2-MΦ, the VPAC1 antagonist increased the uptake of oxLDL, whereas the VPAC1 agonist decreased the oxLDL-induced intracellular triglyceride content. Conclusion: Our data suggest that PACAP via VPAC1 signaling plays an important regulatory role in inflammatory processes in atherosclerotic plaques and in lipid homeostasis in different MΦ-subtypes, thereby affecting foam cell formation. Therefore, VPAC1 agonists or PACAP may represent a new class of anti-atherogenic therapeutics.

2.
Front Genet ; 14: 1213829, 2023.
Article in English | MEDLINE | ID: mdl-37564874

ABSTRACT

Next-generation sequencing has revolutionized the field of microbiology research and greatly expanded our knowledge of complex bacterial communities. Nanopore sequencing provides distinct advantages, combining cost-effectiveness, ease of use, high throughput, and high taxonomic resolution through its ability to process long amplicons, such as the entire 16s rRNA genome. We examine the performance of the conventional 27F primer (27F-I) included in the 16S Barcoding Kit distributed by Oxford Nanopore Technologies (ONT) and that of a more degenerate 27F primer (27F-II) in the context of highly complex bacterial communities in 73 human fecal samples. The results show striking differences in both taxonomic diversity and relative abundance of a substantial number of taxa between the two primer sets. Primer 27F-I reveals a significantly lower biodiversity and, for example, at the taxonomic level of the phyla, a dominance of Firmicutes and Proteobacteria as determined by relative abundances, as well as an unusually high ratio of Firmicutes/Bacteriodetes when compared to the more degenerate primer set (27F-II). Considering the findings in the context of the gut microbiomes common in Western industrial societies, as reported in the American Gut Project, the more degenerate primer set (27F-II) reflects the composition and diversity of the fecal microbiome significantly better than the 27F-I primer. This study provides a fundamentally relevant comparative analysis of the in situ performance of two primer sets designed for sequencing of the entire 16s rRNA genome and suggests that the more degenerate primer set (27F-II) should be preferred for nanopore sequencing-based analyses of the human fecal microbiome.

3.
Biomedicines ; 11(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36979889

ABSTRACT

Cancer cachexia describes a syndrome of muscle wasting and lipolysis that is still largely untreatable and negatively impacts prognosis, mobility, and healthcare costs. Since upregulation of skeletal muscle monoamine-oxidase-A (MAO-A), a source of reactive oxygen species, may contribute to cachexia, we investigated the effects of the MAO-inhibitor harmine-hydrochloride (HH, intraperitoneal, 8 weeks) on muscle wasting in a triple-transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC) and wild type (WT) mice. Gastrocnemius and soleus muscle cryo-cross-sections were analyzed for fiber type-specific cross-sectional area (CSA), fraction and capillarization using ATPase- and lectin-stainings. Transcripts of pro-apoptotic, -atrophic, and -inflammatory signals were determined by RT-qPCR. Furthermore, we evaluated the integrity of neuromuscular junction (NMJ, pre-/post-synaptic co-staining) and mitochondrial ultrastructure (transmission electron microscopy). MAO-A expression in gastrocnemius muscle was increased with PDAC vs. WT (immunohistochemistry: p < 0.05; Western blot: by trend). PDAC expectedly reduced fiber CSA and upregulated IL-1ß in both calf muscles, while MuRF1 expression increased in soleus muscle only. Although IL-1ß decreased, HH caused an additional 38.65% (p < 0.001) decrease in gastrocnemius muscle (IIBX) fiber CSA. Moreover, soleus muscle CSA remained unchanged despite the downregulation of E3-ligases FBXO32 (p < 0.05) and MuRF1 (p < 0.01) through HH. Notably, HH significantly decreased the post-synaptic NMJ area (quadriceps muscle) and glutathione levels (gastrocnemius muscle), thereby increasing mitochondrial damage and centronucleation in soleus and gastrocnemius type IIBX fibers. Moreover, although pro-atrophic/-inflammatory signals are reversed, HH unfortunately fails to stop and rather promotes PDAC-related muscle wasting, possibly via denervation or mitochondrial damage. These differential adverse vs. therapeutic effects warrant studies regarding dose-dependent benefits and risks with consideration of other targets of HH, such as the dual-specificity tyrosine phosphorylation regulated kinases 1A and B (DYRK1A/B).

4.
Front Pharmacol ; 13: 948248, 2022.
Article in English | MEDLINE | ID: mdl-36569306

ABSTRACT

Introduction: Althaea officinalis L.'s root extract (REA) has been used as a medicinal plant since ancient times to treat a cough. Applying REA leads to a protective film that induces a faster regeneration of the lesioned laryngopharyngeal mucosa caused by dry coughs. The buccopharyngeal mucosa is a highly vascularized tissue. In this regard, anti-inflammatory/-oxidant phytochemicals that improve the repair of the lesion site, e.g., neovascularization in the wound, are critical for promoting healing. For this reason, it is essential to investigate the effects of Phytohustil® and REA on different cellular components of the mucosa under conditions similar to those found in the injured mucosa. Thus, this in vitro study investigated the anti-inflammatory/oxidative and pro-migratory properties of Phytohustil® cough syrup on vascular endothelial cells. Methods: Human umbilical vein endothelial cells (HUVEC) were pretreated (24 h) with Phytohustil®, its excipients, or REA, followed by incubation with hydrogen peroxide (H2O2; 1 h; pro-oxidative) or with lipopolysaccharides (LPS; 3 h; pro-inflammatory). Viability and cytotoxicity were measured by PrestoBlue® assay. Intracellular reactive oxygen species (ROS) were quantified with 20-70-dichlorofluorescein diacetate (DCFDA). The release of interleukin 6 (IL6) was determined by enzyme-linked immunosorbent assay (ELISA). The migratory capacity of HUVEC was measured using a scratch assay. Results: Our results show that Phytohustil®, its excipients and REA were not cytotoxic. Pretreatment of HUVEC (24 h) with Phytohustil® or REA inhibited the LPS-activated IL6 release. Phytohustil® or REA inhibited the H2O2-induced cytotoxicity and intracellular ROS production. Phytohustil® and REA significantly stimulated wound closure compared to the control. Conclusion: Our data show that Phytohustil® and REA have anti-inflammatory/-oxidant properties and improve the migratory capacity of vascular endothelial cells. These properties may contribute to the healing characteristics of Phytohustil® and support the benefit of Phytohustil® in patient's treatment of irritated oral mucosa.

5.
Cancers (Basel) ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36230513

ABSTRACT

Although growth differentiation factor-15 (GDF-15) is highly expressed in PCa, its role in the development and progression of PCa is unclear. The present study aims to determine the density of GDF-15+ cells and immune cells (M1-/M2 macrophages [MΦ], lymphocytes) in PCa of different Gleason scores (GS) compared to BPH. Immunohistochemistry and double immunofluorescence were performed on paraffin-embedded human PCa and BPH biopsies with antibodies directed against GDF-15, CD68 (M1 MΦ), CD163 (M2 MΦ), CD4, CD8, CD19 (T /B lymphocytes), or PD-L1. PGP9.5 served as a marker for innervation and neuroendocrine cells. GDF-15+ cell density was higher in all GS than in BPH. CD68+ MΦ density in GS9 and CD163+ MΦ exceeded that in BPH. GDF-15+ cell density correlated significantly positively with CD68+ or CD163+ MΦ density in extratumoral areas. Double immunoreactive GDF-15+/CD68+ cells were found as transepithelial migrating MΦ. Stromal CD68+ MΦ lacked GDF-15+. The area of PGP9.5+ innervation was higher in GS9 than in BPH. PGP9.5+ cells, occasionally copositive for GDF-15+, also occurred in the glandular epithelium. In GS6, but not in BPH, GDF-15+, PD-L1+, and CD68+ cells were found in epithelium within luminal excrescences. The degree of extra-/intra-tumoral GDF-15 increases in M1/M2Φ is proposed to be useful to stratify progredient malignancy of PCa. GDF-15 is a potential target for anti-tumor therapy.

6.
Cells ; 11(10)2022 05 11.
Article in English | MEDLINE | ID: mdl-35626644

ABSTRACT

Skeletal muscle wasting critically impairs the survival and quality of life in patients with pancreatic ductal adenocarcinoma (PDAC). To identify the local factors initiating muscle wasting, we studied inflammation, fiber cross-sectional area (CSA), composition, amino acid metabolism and capillarization, as well as the integrity of neuromuscular junctions (NMJ, pre-/postsynaptic co-staining) and mitochondria (electron microscopy) in the hindlimb muscle of LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre mice with intraepithelial-neoplasia (PanIN) 1-3 and PDAC, compared to wild-type mice (WT). Significant decreases in fiber CSA occurred with PDAC but not with PanIN 1-3, compared to WT: These were found in the gastrocnemius (type 2x: −20.0%) and soleus (type 2a: −21.0%, type 1: −14.2%) muscle with accentuation in the male soleus (type 2a: −24.8%, type 1: −17.4%) and female gastrocnemius muscle (−29.6%). Significantly higher densities of endomysial CD68+ and cyclooxygenase-2+ (COX2+) cells were detected in mice with PDAC, compared to WT mice. Surprisingly, CD68+ and COX2+ cell densities were also higher in mice with PanIN 1-3 in both muscles. Significant positive correlations existed between muscular and hepatic CD68+ or COX2+ cell densities. Moreover, in the gastrocnemius muscle, suppressor-of-cytokine-3 (SOCS3) expressions was upregulated >2.7-fold with PanIN 1A-3 and PDAC. The intracellular pools of proteinogenic amino acids and glutathione significantly increased with PanIN 1A-3 compared to WT. Capillarization, NMJ, and mitochondrial ultrastructure remained unchanged with PanIN or PDAC. In conclusion, the onset of fiber atrophy coincides with the manifestation of PDAC and high-grade local (and hepatic) inflammatory infiltration without compromised microcirculation, innervation or mitochondria. Surprisingly, muscular and hepatic inflammation, SOCS3 upregulation and (proteolytic) increases in free amino acids and glutathione were already detectable in mice with precancerous PanINs. Studies of initial local triggers and defense mechanisms regarding cachexia are warranted for targeted anti-inflammatory prevention.


Subject(s)
Carcinoma in Situ , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Amino Acids , Animals , Cachexia , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/complications , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cyclooxygenase 2/metabolism , Disease Progression , Female , Glutathione/metabolism , Humans , Inflammation , Male , Mice , Muscle, Skeletal/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Quality of Life , Tumor Suppressor Protein p53 , Pancreatic Neoplasms
7.
Minim Invasive Ther Allied Technol ; 31(1): 72-79, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32536324

ABSTRACT

INTRODUCTION: An ultra-thin, fracture-resistant and bioresorbable stent may be advantageous for provisional stenting in vessel bifurcations, if catheter passage and side-branch post-dilatation is facilitated to prevent a 'stent jail' by struts obstructing the orifice of a major side branch. MATERIAL AND METHODS: We studied a highly radiopaque, slowly bioresorbable zinc alloy stent characterized by a novel design of a radiopaque-marked region of ultra-thin struts in the center of the stent. The stent is characterized by an extended range flexibility and high fracture resistance. Zn-stents and Zn-drug eluting stents (DES) were implanted opposite to rigid Nitinol stents into both femoral artery bifurcations of 21 juvenile pigs, followed for one and three months and studied by angiography and histomorphometry.Results and conclusion: Bare Zn-stents with thinner stent struts showed less neointimal hyperplasia compared to Zn-stents with thicker struts. Neointimal formation was further reduced by 12% in Zn-alloy DES. Both, bare Zn-stents and Zn-DES, can be precisely positioned into the femoral artery bifurcation, allowing easy balloon catheter passage through the very thin strut mesh. Side branch orifices remained open after Zn-stent deployment without stent jailing. No stent fractures or particles emboli occurred after the deployment. A Zn-stent with ultra-thin center struts may be useful for provisional stenting in vessel bifurcations.


Subject(s)
Stents , Zinc , Absorbable Implants , Animals , Femoral Artery/surgery , Prosthesis Design , Stents/adverse effects , Swine , Treatment Outcome
8.
Cells ; 10(9)2021 09 07.
Article in English | MEDLINE | ID: mdl-34571994

ABSTRACT

(1) Background: Growth differentiation factor-15 (GDF-15) is associated with cardiovascular diseases and autophagy in human macrophages (MΦ). Thus, we are interested in investigating autophagic mechanisms with special respect to the role of GDF-15. (2) Methods: Recombinant (r)GDF-15 and siRNA GDF-15 were used to investigate the effects of GDF-15 on autophagic and lysosomal activity, as well as autophagosome formation by transmission electron microscopy (TEM) in MΦ. To ascertain the effects of GDF-15-/- on the progression of atherosclerotic lesions, we used GDF-15-/-/ApoE-/- and ApoE-/- mice under a cholesterol-enriched diet (CED). Body weight, body mass index (BMI), blood lipid levels and lumen stenosis in the brachiocephalic trunk (BT) were analyzed. Identification of different cell types and localization of autophagy-relevant proteins in atherosclerotic plaques were performed by immunofluorescence. (3) Results: siGDF-15 reduced and, conversely, rGDF-15 increased the autophagic activity in MΦ, whereas lysosomal activity was unaffected. Autophagic degradation after starvation and rGDF-15 treatment was observed by TEM. GDF-15-/-/ApoE-/- mice, after CED, showed reduced lumen stenosis in the BT, while body weight, BMI and triglycerides were increased compared with ApoE-/- mice. GDF-15-/- decreased p62-accumulation in atherosclerotic lesions, especially in endothelial cells (ECs). (4) Conclusion: GDF-15 seems to be an important factor in the regulation of autophagy, especially in ECs of atherosclerotic lesions, indicating its crucial pathophysiological function during atherosclerosis development.


Subject(s)
Growth Differentiation Factor 15/deficiency , Growth Differentiation Factor 15/metabolism , Transcription Factor TFIIH/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/pharmacology , Apoptosis/physiology , Atherosclerosis/metabolism , Autophagy/physiology , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism , Growth Differentiation Factor 15/genetics , Humans , Lysosomes/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/metabolism , THP-1 Cells , Transcription Factor TFIIH/physiology , Triglycerides/metabolism
9.
J Endocr Soc ; 5(8): bvab082, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34268461

ABSTRACT

Obstructive sleep apnea (OSA), independently of obesity (OBS), predisposes to insulin resistance (IR) for largely unknown reasons. Because OSA-related intermittent hypoxia triggers lipolysis, overnight increases in circulating free fatty acids (FFAs) including palmitic acid (PA) may lead to ectopic intramuscular lipid accumulation potentially contributing to IR. Using 3-T-1H-magnetic resonance spectroscopy, we therefore compared intramyocellular and extramyocellular lipid (IMCL and EMCL) in the vastus lateralis muscle at approximately 7 am between 26 male patients with moderate-to-severe OSA (17 obese, 9 nonobese) and 23 healthy male controls (12 obese, 11 nonobese). Fiber type composition was evaluated by muscle biopsies. Moreover, we measured fasted FFAs including PA, glycated hemoglobin A1c, thigh subcutaneous fat volume (ScFAT, 1.5-T magnetic resonance tomography), and maximal oxygen uptake (VO2max). Fourteen patients were reassessed after continuous positive airway pressure (CPAP) therapy. Total FFAs and PA were significantly (by 178% and 166%) higher in OSA patients vs controls and correlated with the apnea-hypopnea index (AHI) (r ≥ 0.45, P < .01). Moreover, IMCL and EMCL were 55% (P < .05) and 40% (P < .05) higher in OSA patients, that is, 114% and 103% in nonobese, 24.4% and 8.4% in obese participants (with higher control levels). Overall, PA, FFAs (minus PA), and ScFAT significantly contributed to IMCL (multiple r = 0.568, P = .002). CPAP significantly decreased EMCL (-26%) and, by trend only, IMCL, total FFAs, and PA. Muscle fiber composition was unaffected by OSA or CPAP. Increases in IMCL and EMCL are detectable at approximately 7 am in OSA patients and are partly attributable to overnight FFA excesses and high ScFAT or body mass index. CPAP decreases FFAs and IMCL by trend but significantly reduces EMCL.

10.
J Clin Med ; 10(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808409

ABSTRACT

Obstructive sleep apnea (OSA) independent of obesity (OBS) imposes severe cardiovascular risk. To what extent plasma cystine concentration (CySS), a novel pro-oxidative vascular risk factor, is increased in OSA with or without OBS is presently unknown. We therefore studied CySS together with the redox state and precursor amino acids of glutathione (GSH) in peripheral blood mononuclear cells (PBMC) in untreated male patients with OSA (apnea-hypopnea-index (AHI) > 15 h-1, n = 28) compared to healthy male controls (n = 25) stratifying for BMI ≥ or < 30 kg m-2. Fifteen OSA patients were reassessed after 3-5-months CPAP. CySS correlated with cumulative time at an O2-saturation <90% (Tu90%) (r = 0.34, p < 0.05) beside BMI (r = 0.58, p < 0.001) and was higher in subjects with "hypoxic stress" (59.4 ± 2.0 vs. 50.1 ± 2.7 µM, p < 0.01) defined as Tu90% ≥ 15.2 min (corresponding to AHI ≥ 15 h-1). Moreover, CySS significantly correlated with systolic (r = 0.32, p < 0.05) and diastolic (r = 0.31, p < 0.05) blood pressure. CPAP significantly lowered CySS along with blood pressure at unchanged BMI. Unexpectedly, GSH antioxidant capacity in PBMC was increased with OSA and reversed with CPAP. Plasma CySS levels are increased with OSA-related hypoxic stress and associated with higher blood pressure. CPAP decreases both CySS and blood pressure. The role of CySS in OSA-related vascular endpoints and their prevention by CPAP warrants further studies.

11.
PLoS One ; 15(5): e0233357, 2020.
Article in English | MEDLINE | ID: mdl-32433650

ABSTRACT

Trace elements and minerals are compounds that are essential for the support of a variety of biological functions and play an important role in the formation of and the defense against oxidative stress. Here we describe a technique, allowing sequential detection of the trace elements (K, Zn, Se, Cu, Mn, Fe, Mg) in serum and whole blood by an ICP-MS method using single work-up, which is a simple, quick and robust method for the sequential measurement and quantification of the trace elements Sodium (Na), Potassium (K), Calcium (Ca), Zinc (Zn), Selenium (Se), Copper (Cu), Iron (Fe), Manganese (Mn) and Magnesium (Mg) in whole blood as well as Copper (Cu), Selenium (Se), Zinc (Zn), Iron (Fe), Magnesium (Mg), Manganese (Mn), Chromium (Cr), Nickel (Ni), Gold (Au) and Lithium (Li) in human serum. For analysis, only 100 µl of serum or whole blood is sufficient, which make this method suitable for detecting trace element deficiency or excess in newborns and infants. All samples were processed and analyzed by ICP-MS (Agilent Technologies). The accuracy, precision, linearity and the limit of quantification (LOQ), Limit of Blank (LOB) and the limit of detection (LOD) of the method were assessed. Recovery rates were between 80-130% for most of the analyzed elements; repeatabilities (Cv %) calculated were below 15% for most of the measured elements. The validity of the proposed methodology was assessed by analyzing a certified human serum and whole blood material with known concentrations for all elements; the method described is ready for routine use in biomonitoring studies.


Subject(s)
Spectrophotometry, Atomic/methods , Tandem Mass Spectrometry/methods , Trace Elements/blood , Calcium/blood , Chromium/blood , Copper/blood , Gold/blood , Humans , Iron/blood , Limit of Detection , Lithium/blood , Magnesium/blood , Manganese/blood , Nickel/blood , Potassium/blood , Selenium/blood , Sodium/blood , Zinc/blood
12.
Front Pharmacol ; 11: 290, 2020.
Article in English | MEDLINE | ID: mdl-32256361

ABSTRACT

INTRODUCTION: The medicinal plant marshmallow Althaea officinalis L. (A. officinalis), is used for the treatment of cough since centuries. Application of medicinal extracts of marshmallow roots shows immediate effects like a protective film on the inflamed mucosa. Because the soothing layer reduce irritation of the mucous system, a faster regeneration is supported by defense mechanisms required to protect the respiratory tract from environmental injury. Macrophages (MΦ), which belong to a group of multipurpose defensive cells, provide the first line of defense against mucosal invasive pathogens. The present study was performed to investigate, whether the herbal medicinal product has anti-inflammatory or anti-oxidative effects on pro-inflammatorily activated MΦ or after oxidative stress induction. Special attention should be payed to elucidate the effects of A. officinalis on the mechanism of intracellular defense as well as on migratory capacity of the MΦ. RESULTS: Treatment of PMA-differentiated human THP-1 MΦ with Phytohustil® increased their viability without affecting the cell number. Phytohustil® or root extracts of A. officinalis (REAo) - an active component of Phytohustil® - were able to protect human MΦ against H2O2-induced cytotoxicity and H2O2-induced ROS production. Phytohustil®, REAo or diclofenac used as anti-inflammatory reference substance, inhibited the LPS-induced release of tumor necrosis factor-alpha (TNF-α) as well as of IL6 in MΦ. Treatment with Phytohustil®, its excipients or REAo did not impair the mitochondrial membrane potential (MMP). Finally, Phytohustil® and REAo activated the migratory capacity of MΦ. CONCLUSION: The present in vitro investigations indicate protective, i.e., anti-oxidative and anti-inflammatory effects of REAo and Phytohustil®, additionally improving the migratory capacity of MΦ. These antiinflammatory effects were similar or even better than diclofenac. Thus, our data support and may explain the positive effect of Phytohustil® observed in patients during the therapy of inflamed buccal mucosal membranes or treatment of cough.

13.
Immunobiology ; 225(3): 151930, 2020 05.
Article in English | MEDLINE | ID: mdl-32173151

ABSTRACT

The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) is vasoactive and cytoprotective and exerts immunoregulatory functions throughout the nervous, neuroendocrine cardiovascular and immune systems in health and disease. PACAP mainly acts through PAC1 receptor signaling in neuronal communication, but the role of PAC1 in immune regulation of atherosclerosis is not known. Here, we generated PAC1-/-/ApoE-/- mice to test, whether PAC1-/- influences plasma cholesterol-/triglyceride levels and/or atherogenesis in the brachiocephalic trunk (BT) seen in ApoE-/- mice, under standard chow (SC) or cholesterol-enriched diet (CED). Furthermore, the effect of PAC1-/-, on inflammatory, autophagy-, apoptosis- and necroptosis-relevant proteins in atherosclerotic plaques was determined. In plaques of PAC1-/-/ApoE-/- mice fed a SC, the immunoreactivity for apoptotic, autophagic, necroptotic and proinflammatory proteins was increased, however, proliferation was unaffected. Interestingly, without affecting hyperlipidemia, PAC1-/- in ApoE-/- mice remarkably reduced CED-induced lumen stenosis seen in ApoE-/- mice. Thus, PAC1-/- allows unchecked inflammation, necroptosis and decreased proliferation during SC, apparently priming the BT to develop reduced atheroma under subsequent CED. Remarkably, no differences in inflammation/necroptosis signatures in the atheroma under CED between PAC1-/-/ApoE-/- and ApoE-/- mice were observed. These data indicate that selective PAC1 antagonists should offer potential as a novel class of atheroprotective therapeutics, especially during hypercholesterolemia.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/etiology , Atherosclerosis/pathology , Cholesterol, Dietary , Disease Susceptibility , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency , Animals , Apoptosis , Atherosclerosis/metabolism , Autophagy , Biomarkers , Cholesterol, Dietary/adverse effects , Disease Models, Animal , Disease Progression , Homozygote , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Phenotype , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
14.
Front Pharmacol ; 11: 603575, 2020.
Article in English | MEDLINE | ID: mdl-33628177

ABSTRACT

Introduction: Herbal medicinal plants as Hypericum perforatum L., known as St. John's wort (SJW) have been in use for a long time. SJW that is specifically used for the treatment of depressive disorders. Inflammatory cytokines derived from microglia play an important role in the regulation of the synthesis and reuptake of glutamate and influence synaptic function, morphology and neuronal plasticity. The present study was performed to investigate, whether STW3-VI, a special SJW extract has protective effects on mouse SIM-A9 microglia against cytotoxic and proinflammatory effects of ROS, glutamate, NMDA or cortisol. Additionally, we investigated the effects of SJW on migratory and phagocytic properties of microglia. Results: Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 µg/ml)-in contrast to desipramine-inhibited the H2O2-induced TNF-α release by 20-40%. Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 µg/ml) delayed the 3 or 4 mM H2O2-induced intracellular ROS level by 26.9 and 44.4%, respectively. Furthermore, pre-treatment (48 h) of microglia with STW3-VI (5 µg/ml) - in contrast to desipramine - lowered the glutamate-induced cytotoxicity by 13.2%. Besides, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 µg/ml) or desipramine (5 µM) inhibited the NMDA-induced decrease of the viability by 16.5-28.8% or 12%, respectively. Finally, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 µg/ml)-in contrast to desipramine - reduced the cortisol-induced cytotoxicity by 15.5 and 12.9%. Treatment of microglia with STW3-VI (10 or 100 µg/ml) increased the migratory and the phagocytic capacities by 100 and 40%. Conclusion: Our data provide evidence that STW3-VI-in contrast to desipramine - protects microglia from oxidative stress, NMDA- or glutamate-induced cytotoxicity, and has anti-inflammatory properties that are accompanied by improvement of their migratory and phagocytic capacity. These protective (particularly the anti-inflammatory) properties may be beneficial in the treatment of depressive disorders.

15.
Urol Oncol ; 38(1): 3.e7-3.e15, 2020 01.
Article in English | MEDLINE | ID: mdl-30241953

ABSTRACT

Innervation of prostate cancer (CaP) tissue favors tumor progression and metastasis but the regulation of innervation in CaP is unclear. The oncogenic transcription factor ERG is commonly induced by a typical TMPRSS2-ERG (TE) gene fusion in CaP and may affect innervation. Here, we analyzed whether nerve density of CaP tissue is related to TE status or perineural infiltration status of CaP tissue. In parallel, we measured several members of the neuropilin/plexin/semaphorin family (NRP, PLXN, and SEMA) as possible targets mediating innervation. The TE-gene-fusion status was determined at the mRNA level in CaP tissues by nested RT-PCR. Transcript levels were analyzed by quantitative RT-PCR in CaP tissue or cell line homogenate. ERG was analyzed by immunostaining, and the nerve density was evaluated by immunostaining for PGP9.5 and axonal neurofilament. Data were analyzed by correlation (Spearman), linear regression, Mann-Whitney U test, and contingency table analyses. TE-positive (TE-1) vs. TE-negative (TE-0) CaP tissues displayed significantly enhanced ERG-mRNA levels (TE-0: -4.183; TE-1: -2.994, P < 0.001) and ERG immunostaining (Erg-IH score; TE-0: 0.4211; TE-1: 1.391; P < 0.0001). Notably, the nerve density was significantly increased in CaP tissue samples with positive TE status compared to negative TE status (TE-0, ND score = 1.5; TE-1, ND score = 2.0; P <0.01). NRP1, NRP2, PLXNA2, PLXNB1, SEMA3A, and SEMA4B mRNAs were detectable in CaP tissues and CaP cell lines at quite heterogeneous levels. In CaP tissues, we observed significant positive correlations of ERG with NRP2, PLXNA2, PLXNB1, and SEMA4B. TE-positive CaP tissues displayed enhanced nerve density. ERG correlated with some NRP/PLXN/SEMA components suggesting possible regulatory relevance of ERG for CaP innervation.


Subject(s)
Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Aged , Humans , Male , Middle Aged
16.
Data Brief ; 23: 103728, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372395

ABSTRACT

Growth differentiation factor-15 (GDF-15) is a member of the TGF-ß superfamily, identical to MΦ-inhibitory cytokine-1 (MIC-1). GDF-15 is associated with e.g. cardiovascular disease, inflammation and development of atherosclerosis and is highly expressed in macrophages (MΦ) of atherosclerotic lesions. Moreover, there exists an indication for the involvement of oxidized-low density lipoprotein (oxLDL) uptake and autophagic processes by MΦ regarding arteriosclerotic progression. Thus, we were interested to investigate a potential regulatory effect of GDF-15 on autophagy signaling pathway in human MΦ during foam cell formation. Here, we present western blot data of ATG5, ATG12/ATG5-complex and p62 regarding the GDF-15 concentration. For further interpretation of the data presented in this article, please see the research article "Growth differentiation factor-15 regulates oxLDL-induced lipid homeostasis and autophagy in human macrophages" [1].

17.
Cell Tissue Res ; 378(1): 143-154, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30989399

ABSTRACT

It is well known that sepsis and inflammation reduce male fertility. Within the testis, toll-like receptor 3 (TLR3) is constitutively expressed and recognizes double-stranded RNA (dsRNA) from viruses, degraded bacteria, damaged tissues and necrotic cells. To characterize the potential role of TLR3 in response to testicular infections, its expression and downstream signaling were investigated upon challenge with lipopolysaccharides (LPS) in two mouse strains that differ in their immuno-competence regarding T cell-regulated immunity. Thereto, Balb/c and Foxn1nu mice were randomized into six interventional groups treated with either i.v. application of saline or LPS followed by 20 min, 5 h 30 min and 18 h of observation and two sham-treated control groups. LPS administration induced a significant stress response; the amplification was manifested for TLR3 and interleukin 6 (IL6) mRNA in the impaired testis 5 h 30 min after LPS injection. TLR3 immunostaining revealed that TLR3 was primarily localized in spermatocytes. The TLR3 expression displayed different temporal dynamics between both mouse strains. However, immunofluorescence staining indicated only punctual interferon regulatory factor 3 (IRF3) expression upon LPS treatment along with minor alterations in interferon ß (IFNß) mRNA expression. Induction of acute inflammation was closely followed by a significant shift of the Bax/Bcl2 ratio to pro-apoptotic signaling accompanied by augmented TUNEL-positive cells 18 h after LPS injection with again differing patterns in both mouse strains. In conclusion, this study shows the involvement of TLR3 in response to LPS-induced testicular inflammation in immuno-competent and -incompetent mice, yet lacking transmission into its signaling pathway.


Subject(s)
Apoptosis/immunology , Orchitis/immunology , Spermatocytes/immunology , Testis/metabolism , Toll-Like Receptor 3/immunology , Animals , Interferon Regulatory Factor-3/immunology , Interferon-beta/immunology , Lipopolysaccharides/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Orchitis/chemically induced , Spermatocytes/cytology , Testis/pathology
18.
J Cancer Res Clin Oncol ; 145(6): 1405-1416, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30903318

ABSTRACT

PURPOSE: NOD1 and NOD2 (nucleotide-binding oligomerization domain)-receptors are intracellular receptors and belong to the family of pattern recognition receptors being present in both human and murine renal tubular cells. Besides, NOD1 has been proved to promote apoptosis, upon its overexpression. Hence, we aimed to investigate NOD1 and NOD2 expression in human clear cell renal cell carcinoma (ccRCC). METHODS: Tumor and corresponding adjacent healthy tissues from 41 patients with histopathological diagnosis of ccRCC as well as primary isolated renal tubular epithelial cells (TECs) and tumor tissue from a murine xenograft model using CAKI-1 ccRCC cells were analyzed. RESULTS: NOD1 and NOD2 mRNA was constitutively expressed in both tumor and adjacent healthy renal tissue, with NOD1 being significantly lower and in contrast NOD2 significantly higher expressed in tumor tissue compared to healthy tissues. Immunohistochemically, NOD1 was located not only in the cytoplasm, but also in the nucleus in ccRCC tissue whereas NOD2 was solely localized in the cytoplasm in both human ccRCC as well as in the healthy tubular system. Focusing on the vasculature, NOD2 displayed broader expression than NOD1. In primary TECs as well as CAKI-1 cells NOD1 and NOD2 was constitutively expressed and increasable upon LPS stimulation. In the mouse xenograft model, human NOD1 mRNA was significantly higher expressed compared to NOD2. In contrast hereto, we observed a shift towards lower mouse NOD1 compared to NOD2 mRNA expression. CONCLUSION: In view of reduced apoptosis-associated NOD1 expression in ccRCC tissue opposed to higher expression of NOD2 in tumor vasculature, inducibility of NOD expression in TECs as well as the detected shift of NOD1 and NOD2 expression in the mouse xenograft model, modulation of NOD receptors might, therefore, provide a molecular therapeutic approach in ccRCC.


Subject(s)
Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Nod1 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/immunology , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Epithelial Cells/immunology , Epithelial Cells/pathology , Female , Heterografts , Humans , Immunity, Innate , Immunohistochemistry , Kidney/blood supply , Kidney/immunology , Kidney Neoplasms/blood supply , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Tubules/immunology , Male , Mice , Middle Aged , Nod1 Signaling Adaptor Protein/biosynthesis , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/biosynthesis , Nod2 Signaling Adaptor Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Phytomedicine ; 58: 152868, 2019 May.
Article in English | MEDLINE | ID: mdl-30831466

ABSTRACT

BACKGROUND: Populus tremula L. (Poplar), Fraxinus excelsior L. (ash) and Solidago virgaurea L. (goldenrod) have been used for medicinal purposes through centuries, to treat pain, fever and inflammation, but their mechanisms of action are still not fully understood. The present study was performed to investigate, whether the herbal medicinal product Phytodolor® (STW 1) and its components have anti-inflammatory effects on activated human monocytes and differentiated human macrophages to elucidate their modes of action in comparison with well-known analgesic, non-steroidal anti-inflammatory drug (NSAIDs) as diclofenac. METHODS: Adherent human monocytes obtained from peripheral blood mononuclear cells (PBMCs) were cultured in serum-free medium and pre-treated with 50-100 µg/ml of diclofenac, STW 1, their components, poplar, ash or goldenrod or its combination (0.05% to 2%). Thereafter, monocytes were activated with 0.1 or 1 µg/ml LPS for 24 h. The intracellular expressions of TNF-α or PTGS2 were determined by cell-based ELISA. Apoptotic cells were identified by YO-PRO-1 staining. Protein or total RNA were isolated to perform SDS-PAGE/Western blot and qRT-PCR analyses. PMA-differentiated human THP-1 macrophages were pre-treated with diclofenac (50 µg/ml) or STW1 (0.1%) and afterwards with LPS (1 µg/ml) and the translocation of the intracellular p62 NF-κB subunit was detected by immunofluorescence. RESULTS: STW 1 inhibited the intracellular content of TNF-α and PTGS2 protein, as well as of TNF-α and PTGS2 gene expression and induced apoptosis in LPS-activated human monocytes under serum free conditions. Furthermore, STW 1 inhibited the translocation of the p65 subunit of the redox-regulated NF-κB into the nucleus in LPS-activated human macrophages. CONCLUSION: The present in vitro investigations suggest a significant anti-inflammatory activity of STW 1 and its components by inhibiting pro-inflammatory cytokine as TNF-α and the key enzyme PTGS2 in LPS-activated human monocytes, which is, at least partly mediated through the suppression of NF-κB activation. Our results provide evidence for distinctive anti-inflammatory effects of STW 1 and its components on LPS-activated human monocytes/macrophages and, thus, for the therapeutic use of STW 1 in inflammation and pain related disorders.


Subject(s)
Fraxinus/chemistry , Inflammation/drug therapy , Phytotherapy , Plant Extracts/administration & dosage , Populus/chemistry , Solidago/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Apoptosis/drug effects , Cyclooxygenase 2/metabolism , Diclofenac/administration & dosage , Humans , Inflammation/chemically induced , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/adverse effects , Macrophages/drug effects , Monocytes/drug effects , NF-kappa B/metabolism , Plants, Medicinal , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
20.
Chem Biodivers ; 16(4): e1900012, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30773842

ABSTRACT

Two lipophilic derivatives of formycin A (1) and formycin B (5) carrying an O-2',3'-(ethyl levulinate) ketal group have been prepared. These were base-alkylated at N(1) (for 1) and N(1) and N(6) (for 5) with both isopentenyl and all-trans-farnesyl residues. Upon the prenylation, side reactions were observed, resulting in the formation of nucleolipids with a novel tricyclic nucleobase (→4a, 4b). In the case of formycin B, O-2',3'-(ethyl levulinate) (6) farnesylation gave the double prenylated nucleolipid 7. All new compounds were characterized by 1 H-, 13 C-, UV/VIS and fluorescence spectroscopy, by ESI-MS spectrometry and/or by elemental analysis. Log P determinations between water and octanol as well as water and cyclohexane of a selection of compounds allowed qualitative conclusions concerning their potential blood-brain barrier passage efficiency. All compounds were investigated in vitro with respect to their cytotoxic activity toward rat malignant neuroectodermal BT4Ca as well as against a series of human glioblastoma cell lines (GOS 3, U-87 MG and GBM 2014/42). In order to differentiate between anticancer and side effects of the novel nucleolipids, we also studied their activity on PMA-differentiated human THP-1 macrophages. Here, we show that particularly the formycin A derivative 3b possesses promising antitumor properties in several cancer cell lines with profound cytotoxic effects partly on human glioblastoma cells, with a higher efficacy than the chemotherapeutic drug 5-fluorouridine.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Formycins/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Formycins/chemical synthesis , Formycins/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...