Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 51(2): 346-357, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37782321

ABSTRACT

PURPOSE: Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS: The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS: A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION: The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Equipment Design , Positron-Emission Tomography/methods , Phantoms, Imaging , Brain/diagnostic imaging
2.
Phys Med Biol ; 68(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37890466

ABSTRACT

Objective.Spatial resolution is a crucial parameter for a positron emission tomography (PET) scanner. The spatial resolution of a high-resolution small animal PET scanner is significantly influenced by the effect of depth of interaction (DOI) uncertainty. The aim of this work is to investigate the impact of DOI resolution on the spatial resolution of a small animal PET scanner called SIAT aPET and determine the required DOI resolution to achieve nearly uniform spatial resolution within the field of view (FOV).Approach. The SIAT aPET detectors utilize 1.0 × 1.0 × 20 mm3crystals, with an average DOI resolution of ∼2 mm. A default number of 16 DOI bins are used during data acquisition. First, a Na-22 point source was scanned in the center of the axial FOV with different radial offsets. Then, a Derenzo phantom was scanned at radial offsets of 0 and 15 mm in the center axial FOV. The measured DOI information was rebinned to 1, 2, 4 and 8 DOI bins to mimic different DOI resolutions of the detectors during image reconstruction.Main results. Significant artifacts were observed in images obtained from both the point source and Derenzo phantom when using only one DOI bin. When accurate measurement of DOI is not achieved, degradation in spatial resolution is more pronounced in the radial direction compared to tangential and axial directions for large radial offsets. The radial spatial resolutions at a 30 mm radial offset are 5.05, 2.62, 1.24, 0.86 and 0.78 mm when using 1, 2, 4, 8, or 16 DOI bins, respectively. The axial spatial resolution improved from ∼1.3 to 0.7 mm as the number of DOI bins increased from 1 to 16 at radial offsets from 0 to 25 mm. Two DOI bins are required to obtain images without significant artifacts. The required DOI resolution is about three times the crystal width of SIAT aPET to achieve a uniform submillimeter spatial resolution within the central 60 mm FOV and resolve the 1 mm rods of the Derenzo phantom at both positions.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Animals , Equipment Design , Positron-Emission Tomography/methods , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...