Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35834125

ABSTRACT

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Lakes , Wastewater/microbiology , Water Purification , Bacteria/classification , Bacteria/isolation & purification , Denitrification , Enterobacter/classification , Enterobacter/growth & development , Enterobacter/metabolism , Kenya , Klebsiella/classification , Klebsiella/growth & development , Klebsiella/isolation & purification , Klebsiella/metabolism , Lakes/chemistry , Lakes/microbiology , Nitrification , Proteobacteria/classification , Proteobacteria/growth & development , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Pseudomonas/classification , Pseudomonas/growth & development , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Rivers/microbiology , Wastewater/chemistry
2.
J Basic Microbiol ; 59(12): 1173-1184, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31621083

ABSTRACT

Lipids are hydrocarbons comprised of long-chain fatty acids and are found in all living things. In the environment, microorganisms degrade them to obtain energy using esterases and lipases. These enzymes are nowadays used in different industrial applications. We report isolation of 24 bacteria with esteresic and lipolytic activity from Lake Magadi, Kenya. The isolates were characterised using morphological, biochemical, and molecular methods. Isolates grew at an optimum salt concentration of 5-8% (w/v), pH range of 8.0-9.0, and temperature range of 35-40°C. The isolates were positive for esterase and lipase assay as well as other extracellular enzymes. Phylogenetic analysis of the 16S ribosomal RNA gene showed that the isolates were affiliated to the genus Bacillus, Alkalibacterium, Staphylococcus, Micrococcus, Halomonas, and Alkalilimnicola. None of the bacterial isolates produced antimicrobial agents, and all of them were resistant to trimethoprim and nalidixic acid but susceptible to streptomycin, amoxillin, chloramphenicol, and cefotaxime. Growth at elevated pH, salt, and temperature is an indicator that the enzymes from these organisms could function well under haloalkaline conditions. Therefore, Lake Magadi could be a good source of isolates with the potential to produce unique biocatalysts for the biotechnology industry.


Subject(s)
Bacteria/classification , Bacteria/enzymology , Biodiversity , Esterases/metabolism , Lakes/microbiology , Lipase/metabolism , Water Microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , DNA, Bacterial/genetics , Esterases/genetics , Hydrogen-Ion Concentration , Kenya , Lakes/chemistry , Lipase/genetics , Microbial Sensitivity Tests , Phylogeny , RNA, Ribosomal, 16S/genetics , Salt Tolerance , Sequence Analysis, DNA , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...