Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(34): 22626-22643, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37584070

ABSTRACT

In recent years, antimonene nanotubes have attracted considerable interest for diverse applications owing to their promising physical properties. In this study, classical molecular dynamics simulations with Stillinger-Weber potential were carried out to explore the fundamental mechanical characteristics of two stable allotropes of antimonene nanotubes (SbNTs), namely puckered (α-) and buckled (ß-) nanotubes. Mechanical properties and deformation mechanisms of antimonene nanotubes, including ultimate tensile strength, fracture strain, and Young's modulus, were thoroughly examined by considering chirality, diameter, temperature, and strain rate variables. Numerical simulations revealed that all SbNT specimens examined in this study exhibit brittle failures with a complete loss of load-bearing capability following the ultimate stress level. The brittle nature of the SbNTs with varied diameters remained unchanged under different temperatures and loading-rate conditions. Owing to their distinct crystal structure in the armchair and zigzag directions, α-SbNTs present a distinctive anisotropic behavior compared to ß-SbNTs. While the variation of the elastic modulus with temperature is not notable, the tensile strength and fracture strain of SbNTs deteriorated considerably at high temperatures. Furthermore, it was observed that the effects of diameter and temperature on zigzag α-SbNT are more pronounced due to its lower stability. Altogether, this study presents a comprehensive examination of the mechanical characteristics of the two stable antimonene allotropes and provides useful information for their potential utilizations in a wide range of applications.

2.
Nanotechnology ; 22(6): 065706, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21212485

ABSTRACT

The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-à-vis the corners of ND.

SELECTION OF CITATIONS
SEARCH DETAIL