Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 845: 157139, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35817109

ABSTRACT

Coarse resolution sensors are not very sensitive at detecting small fire patches, making current estimations of global burned areas (BA) very conservative. Using medium or high-resolution sensors to generate BA products becomes then a priority, particularly in areas where fires tend to be small and frequent. Building on previous work that developed a small fire dataset (SFD) for Sub-Saharan Africa for 2016, this paper presents a new version of the dataset for 2019 using the two Sentinel-2 satellites (A and B) and VIIRS active fires. Total estimated BA was 4.8 Mkm2. This value was much higher than estimations from two global, coarser-spatial resolution BA products based on MODIS data for the same area and period: 80 % greater than estimates from FireCCI51 (based on MODIS 250 m bands) and 120 % larger than MCD64A1 (based on MODIS 500 m bands). The main differences were observed in those months with higher fire occurrence (November to January for the Northern Hemisphere regions and June to September for the Southern Hemisphere ones). Accuracy assessment of the SFD product was based on a novel sampling strategy designed to obtain independent fire reference perimeters. Validation results showed remarkable high accuracy values comparing to existing global BA products. Overall omission errors (OE) were estimated as 8.5 %, commission errors (CE) as 15.0 %, with a Dice Coefficient of 87.7 %. All of these estimations implied significant improvements over the global, coarser spatial resolution BA products (OE > 50 % and CE > 20 % for the same area and period), as well as over the previous SFD product for 2016 of the same area, generated from a single Sentinel-2 satellite and MODIS active fires (OE = 26.5 % and CE = 19.3 %). Temporal accuracies greatly increased as well with the new product, with 92.5 % of fires detected within the first 10 days of occurrence.


Subject(s)
Fires , Africa South of the Sahara
2.
Remote Sens (Basel) ; 10(2): 352, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32704392

ABSTRACT

The Atmospheric Correction Inter-comparison eXercise (ACIX) is an international initiative with the aim to analyse the Surface Reflectance (SR) products of various state-of-the-art atmospheric correction (AC) processors. The Aerosol Optical Thickness (AOT) and Water Vapour (WV) are also examined in ACIX as additional outputs of an AC processing. In this paper, the general ACIX framework is discussed; special mention is made of the motivation to initiate this challenge, the inter-comparison protocol and the principal results. ACIX is free and open and every developer was welcome to participate. Eventually, 12 participants applied their approaches to various Landsat-8 and Sentinel-2 image datasets acquired over sites around the world. The current results diverge depending on the sensors, products and sites, indicating their strengths and weaknesses. Indeed, this first implementation of processor inter-comparison was proven to be a good lesson for the developers to learn the advantages and limitations of their approaches. Various algorithm improvements are expected, if not already implemented, and the enhanced performances are yet to be investigated in future ACIX experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...