Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Planta Med ; 88(1): 20-32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33434938

ABSTRACT

The content of the flavonolignan mixture silymarin and its individual components (silichristin, silidianin, silibinin A, silibinin B, isosilibinin A, and isosilibinin B) in whole and milled milk thistle seeds (Silybi mariani fructus) was analyzed with near-infrared spectroscopy. The analytical performance of one benchtop and two handheld near-infrared spectrometers was compared. Reference analysis was performed with HPLC following a Soxhlet extraction (European Pharmacopoeia) and a more resource-efficient ultrasonic extraction. The reliability of near-infrared spectral analysis determined through partial least squares regression models constructed independently for the spectral datasets obtained by the three spectrometers was as follows. The benchtop device NIRFlex N-500 performed the best both for milled and whole seeds with a root mean square error of CV between 0.01 and 0.17%. The handheld spectrometer MicroNIR 2200 as well as the microPHAZIR provided a similar performance (root mean square error of CV between 0.01 and 0.18% and between 0.01 and 0.23%, respectively). We carried out quantum chemical simulation of near-infrared spectra of silichristin, silidianin, silibinin, and isosilibinin for interpretation of the results of spectral analysis. This provided understanding of the absorption regions meaningful for the calibration. Further, it helped to better separate how the chemical and physical properties of the samples affect the analysis. While the study demonstrated that milling of samples slightly improves the performance, it was deemed to be critical only for the analysis carried out with the microPHAZIR. This study evidenced that rapid and nondestructive quantification of silymarin and individual flavonolignans is possible with miniaturized near-infrared spectroscopy in whole milk thistle seeds.


Subject(s)
Seeds , Silymarin , Least-Squares Analysis , Silybum marianum , Plant Extracts , Reproducibility of Results
2.
J Phys Chem A ; 125(4): 1062-1068, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33399451

ABSTRACT

High-pressure ice polymorphs are important for our understanding of hydrogen bonding and exist in the interior of the earth and icy moons. Nonetheless, spectroscopic information about them is scarce, where no information about their optical properties in the near-infrared (NIR) region is available at all. We here report NIR spectra of six ice polymorphs differing in terms of their density and O-atom topology, namely, ices II, IV, V, VI, IX, and XII, in comparison with the known spectra of ice Ih. By contrast to earlier work, we do not use mulling agents or transmission of thin films but use diffuse reflectance on powdered samples in liquid nitrogen. The first overtone of the OH-stretching mode is identified as the marker band most suitable to distinguish between these ices. There is a clear blue shift of this band that increases with increasing topological density in addition to a significant narrowing of the band.

3.
Talanta ; 221: 121165, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076045

ABSTRACT

We investigated caffeine and l-theanine, quality characteristics for camellia sinensis, in milled and ground black tea samples with near-infrared (NIR) spectroscopy giving a direct comparison between the performances of benchtop and handheld NIR spectrometers. The constructed partial least squares regression (PLSR) models for all spectrometers were validated by test-set-validation and according to the obtained root mean square errors of prediction (RMSEP). The performances of the spectrometers were as follows: The benchtop spectrometer NIRFlex N-500 (Büchi, Flawil, Switzerland) showed the best results for milled samples with a RMSEP of 0.14% for caffeine and 0.12% for l-theanine. For the ground samples, a RMSEP of 0.17% for caffeine and 0.12% for l-theanine was gained. While the handheld spectrometers MicroNIR 2200 (Viavi Solutions (former: JDS Uniphase Corporation), Milpitas, USA) and the microPHAZIR (Thermo Fisher Scientific, Waltham, USA) both provided good results for the prediction of caffeine in milled samples (RMSEP of 0.22% and 0.26%), only the microPHAZIR was able to satisfactorily determine the caffeine content in ground samples (RMSEP of 0.28%). The investigation of l-theanine with handheld spectrometers did not lead to convincing results, since R2 was 0.75 for milled samples while ground samples could not be calculated. Decisive differences were concluded in how different NIR instruments capture the chemical information on caffeine vs. l-theanine. The handheld spectrometers manifested limited applicability to l-theanine. Deeper insight was obtained through the detailed NIR band assignments of caffeine and l-theanine derived from quantum mechanical simulation. Narrow working spectral region of handhelds omits the characteristic absorption bands of l-theanine. Therefore, information on l-theanine content measured by the evaluated miniaturized spectrometers is insufficient to enable its effective quantification. In contrast, the most characteristic NIR absorption of caffeine matches the working spectral regions of the handheld NIR spectrometers, hence their performance is comparable with the benchtop device.

4.
Molecules ; 25(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316308

ABSTRACT

Near-infrared (NIR) spectroscopy, combined with multivariate data analysis techniques, was used to rapidly differentiate between South African game species, irrespective of the treatment (fresh or previously frozen) or the muscle type. These individual classes (fresh; previously frozen; muscle type) were also determined per species, using hierarchical modelling. Spectra were collected with a portable handheld spectrophotometer in the 908-1676-nm range. With partial least squares discriminant analysis models, we could differentiate between the species with accuracies ranging from 89.8%-93.2%. It was also possible to distinguish between fresh and previously frozen meat (90%-100% accuracy). In addition, it was possible to distinguish between ostrich muscles (100%), as well as the forequarters and hindquarters of the zebra (90.3%) and springbok (97.9%) muscles. The results confirm NIR spectroscopy's potential as a rapid and non-destructive method for species identification, fresh and previously frozen meat differentiation, and muscle type determination.


Subject(s)
Meat/analysis , Meat/classification , Animals , Discriminant Analysis , Equidae , Freezing , Least-Squares Analysis , Spectroscopy, Near-Infrared
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117377, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31400743

ABSTRACT

In this article the extension of the grid-based Numerov approach to probe two coupled, localised vibrational modes is assessed. The theoretically obtained wave numbers are compared to experimental results for five increasingly complex organic molecules carrying two OH groups measured in gas-phase as well as carbon tetrachloride. By using an appropriate spacing of the associated potential energy grid a deviation of the predicted wave numbers with experiment of ≤1% is achieved for both the fundamental and the first overtone bands. In particular the calculated wave numbers of aliphatic species in vacuum underline the versatility of this approach. In addition, it is demonstrated that bicubic interpolation is a viable strategy to greatly reduce the required data points and thus, the computational effort. Comparison of predicted wave numbers obtained for different conformers with experimental data enables the identification of the most relevant conformer present in solution. Since especially the accurate calculation of overtone vibrations is known to be challenging in case of strongly anharmonic potentials such as OH bonds, the presented approach provides a particularly efficient route to study the properties of the associated overtone contribution under the influence of inter-mode coupling. This is due to the fact that the Numerov approach requires no assumption about form and composition of the vibrational wave functions. In addition, the presented method also provides one of the simplest routes to access combined excitations of the considered vibrational modes.

6.
Molecules ; 24(13)2019 Jul 06.
Article in English | MEDLINE | ID: mdl-31284547

ABSTRACT

The present study demonstrates the applicability of at-line monitoring of the extraction process of Rosmarinus officinalis L. leaves (Rosmarini folium) and the development of near-infrared (NIR) spectroscopic analysis methods. Therefore, whole dried Rosmarini folium samples were extracted by maceration with 70% (v/v) ethanol. For the experimental design three different specimen-taking plans were chosen. At first, monitoring was carried out using three common analytical methods: (a) total hydroxycinnamic derivatives according to the European Pharmacopoeia, (b) total phenolic content according to Folin-Ciocalteu, and (c) rosmarinic acid content measured by UHPLC-UV analysis. Precision validation of the wet chemical assays revealed a repeatability of (a) 0.12% relative standard deviation (RSD), (b) 1.1% RSD, and (c) 0.28% RSD, as well as an intermediate precision of (a) 4.1% RSD, (b) 1.3% RSD, and (c) 0.55% RSD. The collected extracts were analyzed with a NIR spectrometer using a temperature-controlled liquid attachment. Samples were measured in transmission mode with an optical path length of 1 mm. The combination of the recorded spectra and the previously obtained analytical reference values in conjunction with multivariate data analysis enabled the successful establishment of partial least squares regression (PLSR) models. Coefficients of determination (R2) were: (a) 0.94, (b) 0.96, and (c) 0.93 (obtained by test-set validation). Since Pearson correlation analysis revealed that the reference analyses correlated with each other just one of the PSLR models is required. Therefore, it is suggested that PLSR model (b) be used for monitoring the extraction process of Rosmarini folium. The application of NIR spectroscopy provides a fast and non-invasive alternative analysis method, which can subsequently be implemented for on- or in-line process control.


Subject(s)
Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Rosmarinus/chemistry , Spectroscopy, Near-Infrared , Phytochemicals/analysis , Phytochemicals/chemistry , Plant Extracts/analysis
7.
Molecules ; 24(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974741

ABSTRACT

Melamine (IUPAC: 1,3,5-Triazine-2,4,6-triamine) attracts high attention in analytical vibrational spectroscopy due to its misuse as a food adulterant. Vibrational spectroscopy [infrared (IR) and Raman and near-infrared (NIR) spectroscopy] is a major quality control tool in the detection and quantification of melamine content. The physical background for the measured spectra is not interpreted in analytical spectroscopy using chemometrics. In contrast, quantum mechanical calculations are capable of providing deep and independent insights therein. So far, the NIR region of crystalline melamine has not been studied by quantum mechanical calculations, while the investigations of its IR spectra have remained limited. In the present work, we employed fully anharmonic calculation of the NIR spectrum of melamine based on finite models, and also performed IR spectral simulation by using an infinite crystal model-periodic in three dimensions. This yielded detailed and unambiguous NIR band assignments and revised the previously known IR band assignments. We found that the out-of-plane fundamental transitions, which are essential in the IR region, are markedly more sensitive to out-of-plane inter-molecular interactions of melamine than NIR transitions. Proper description of the chemical surrounding of the molecule of melamine is more important than the anharmonicity of its vibrations. In contrast, the NIR bands mostly arise from in-plane vibrations, and remain surprisingly insensitive to the chemical environment. These findings explain previous observations that were reported in IR and NIR analytical studies of melamine.


Subject(s)
Quantum Theory , Triazines/chemistry , Spectrophotometry, Infrared , Spectroscopy, Near-Infrared
8.
Molecules ; 23(12)2018 Nov 24.
Article in English | MEDLINE | ID: mdl-30477229

ABSTRACT

The present paper reports a new method for the quantification of the Ni2+-capacity of an immobilized metal affinity chromatography (IMAC) material using near-infrared spectroscopy (NIRS). Conventional analyses using UV absorption spectroscopy or atomic absorption spectrometry (AAS) need to dissolve the silica-based metal chelate sorbent as sample pretreatment. In the first step, those methods were validated on the basis of an ideal homogenous NiSO4-solution and unveiled that UV with an intermediate precision of 2.6% relative standard deviation (RSD) had an advantage over AAS with an intermediate precision of 6.5% RSD. Therefore, UV analysis was chosen as reference method for the newly established NIRS model which has the advantage of being able to measure the material directly in diffuse reflection mode. Partial least squares regression (PLSR) analysis was used as multivariate data analysis tool for quantification. The best PLSR result obtained was: coefficient of determination (R²) = 0.88, factor = 2, root mean square error of prediction (RMSEP) = 22 µmol/g (test-set validation) or 7.5% RSDPLSR. Validation of the Ni2+-capacity using UV absorption spectroscopy resulted in an intermediate precision of ±18 µmol/g or 5.0% RSD. Therefore, NIRS provides a fast alternative analysis method without the need of sample preparation.


Subject(s)
Chromatography, Affinity , Metals , Nickel , Spectroscopy, Near-Infrared , Metals/chemistry , Nickel/chemistry , Reproducibility of Results
9.
J Hazard Mater ; 355: 180-186, 2018 08 05.
Article in English | MEDLINE | ID: mdl-29800912

ABSTRACT

This study reports the syntheses of four polymeric sorbents based on nucleophilic substitution of Poly(4-vinylbenzylchloride/ethylene glycol dimethacrylate). Polymerization was executed by a simple thermal initiated bulk polymerization procedure. Ground polymer particles were functionalized through reaction with the nucleophiles triethylamine, imidazole, piperidine and pyrrolidine. Mixed-mode phases were characterized by infrared spectroscopy, nitrogen sorption porosimetry and potentiometric titration for determination of chloride content. Furthermore, materials were tested and evaluated for enrichment of seven pharmaceutical and endocrine-disrupting compounds at low ng mL-1 levels. Results demonstrate that the imidazole modified sorbent led to high and constant recovery rates for nearly all tested compounds. Therefore, this polymer was further tested for applicability with two environmental samples. Spiked tap and river water showed similar results as in evaluation experiments. Moreover, the developed method was validated regarding linearity, repeatability, instrumental limits and stability of analytes according to international guidelines.


Subject(s)
Methacrylates/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Antipyrine/chemistry , Carbamazepine/chemistry , Estradiol/chemistry , Estriol/chemistry , Estrogens/chemistry , Estrone/chemistry , Ibuprofen/chemistry , Naproxen/chemistry , Polymerization
10.
J Biophotonics ; 11(7): e201700365, 2018 07.
Article in English | MEDLINE | ID: mdl-29479828

ABSTRACT

Blood constituents such as urea, glucose, lactate, phosphate and creatinine are of high relevance in monitoring the process of detoxification in ambulant dialysis treatment. In the present work, 2 different vibrational spectroscopic techniques are used to determine those molecules quantitatively in artificial dialysate solutions. The goal of the study is to compare the performance of near-infrared (NIR) and mid-infrared (MIR) spectroscopy in hyphenation with partial least squares regression (PLSR) directly by using the same sample set. The results show that MIR spectroscopy is better suited to analyze the analytes of interest. Multilevel multifactor design is used to cover the relevant concentration variations during dialysis. MIR spectroscopy coupled to a multi reflection attenuated total reflection (ATR) cell enables reliable prediction of all target analytes. In contrast, the NIR spectroscopic method does not give access to all 5 components but only to urea and glucose. For both methods, coefficients of determination greater or equal to 0.86 can be achieved in the test-set validation process for urea and glucose. Lactate, phosphate and creatinine perform well in the MIR with R2 ≥ 0.95 using test-set validation.


Subject(s)
Renal Dialysis , Spectroscopy, Near-Infrared , Creatinine/analysis , Glucose/analysis , Lactic Acid/analysis , Least-Squares Analysis , Phosphates/analysis , Urea/analysis
11.
Planta Med ; 84(6-07): 420-427, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29100266

ABSTRACT

In this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated.


Subject(s)
Spectroscopy, Near-Infrared/methods , Thymus Plant/chemistry , Antioxidants/analysis , Chromatography, High Pressure Liquid/methods , Cinnamates/analysis , Depsides/analysis , Least-Squares Analysis , Quality Control , Thymol/analysis , Rosmarinic Acid
12.
Planta Med ; 83(12-13): 1076-1084, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28388786

ABSTRACT

The present study evaluates the analytical performance of near infrared as well as attenuated total reflection infrared spectroscopy for the determination of the rosmarinic acid content in Rosmarini folium. Therefore, the recorded near infrared and attenuated total reflection infrared spectra of 42 milled Rosmarini folium samples were correlated with reference data (range: 1.138-2.199 rosmarinic acid %) obtained by HPLC analysis. Partial least squares regression models were established as a quantitative multivariate data analysis tool. Evaluation via full cross-validation and test set validation resulted in comparable performances for both techniques: near infrared [coefficient of determination: 0.90 (test set validation); standard error of cross-validation: 0.060 rosmarinic acid %; standard error of prediction: 0.058 rosmarinic acid %] and attenuated total reflection infrared [coefficient of determination: 0.91 (test set validation); standard error of cross-validation: 0.063 rosmarinic acid %; standard error of prediction: 0.060 rosmarinic acid %]. Furthermore, quantum chemical calculations were applied to obtain a theoretical infrared spectrum of rosmarinic acid. Good agreement to the spectrum of pure rosmarinic acid was achieved in the lower wavenumber region, whereas the higher wavenumber region showed less compliance. The knowledge of the vibrational modes of rosmarinic acid was used for the association with the high values of the regression coefficient plots of the established partial least squares regression models.


Subject(s)
Cinnamates/analysis , Depsides/analysis , Lamiaceae/chemistry , Spectrophotometry, Infrared/methods , Calibration , Cinnamates/chemistry , Depsides/chemistry , Multivariate Analysis , Rosmarinic Acid
13.
Talanta ; 169: 70-76, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28411824

ABSTRACT

This study examined the applicability of near-infrared (NIR) spectroscopy coupled with multivariate data analysis (MVA) to determine the ideal harvest time of Verbena officinalis. NIR analyses were performed non-invasively on the fresh plant material based on the quantification of the key constituents verbenalin and verbascoside. Vibrational spectroscopic measurements were performed applying a conventional NIR benchtop device as well as a laboratory independent handheld NIR spectrometer. A novel high performance liquid chromatography (HPLC) method was applied as a reference method. For both instruments partial least squares (PLS) regression models were established performing cross validations (CV) and test-set validations (TSV). Quality parameters obtained for the benchtop device revealed that the newly established NIR method enabled reliable quantifications of the main compounds verbenalin and verbascoside related to the dried and fresh plant material. The results of the miniaturised spectrometer revealed that accurate quantitative calibration models could be developed for verbascoside achieving a comparable prediction power to the benchtop device. PLS models for verbenalin were less precise suggesting the application of portable devices including a different spectral range and resolution. The work demonstrated the feasibility of NIR vibrational spectroscopy performing direct measurements on pharmaceutically relevant fresh plant material enabling a quick and simple determination of the ideal harvest time of Verbena officinalis.


Subject(s)
Agriculture/methods , Glucosides/analysis , Iridoid Glycosides/analysis , Phenols/analysis , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Verbena/growth & development , Verbena/metabolism , Time Factors
14.
Talanta ; 166: 109-118, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28213210

ABSTRACT

This study compared three commercially available spectrometers - whereas two of them were miniaturized - in terms of prediction ability of melamine in milk powder (infant formula). Therefore all spectra were split into calibration- and validation-set using Kennard Stone and Duplex algorithm in comparison. For each instrument the three best performing PLSR models were constructed using SNV and Savitzky Golay derivatives. The best RMSEP values were 0.28g/100g, 0.33g/100g and 0.27g/100g for the NIRFlex N-500, the microPHAZIR and the microNIR2200 respectively. Furthermore the multivariate LOD interval [LODmin, LODmax] was calculated for all the PLSR models unveiling significant differences among the spectrometers showing values of 0.20g/100g - 0.27g/100g, 0.28g/100g - 0.54g/100g and 0.44g/100g - 1.01g/100g for the NIRFlex N-500, the microPHAZIR and the microNIR2200 respectively. To assess the robustness of all models, artificial introduction of white noise, baseline shift, multiplicative effect, spectral shrink and stretch, stray light and spectral shift were applied. Monitoring the RMSEP as function of the perturbation gave indication of robustness of the models and helped to compare the performances of the spectrometers. Not taking the additional information from the LOD calculations into account one could falsely assume that all the spectrometers perform equally well which is not the case when the multivariate evaluation and robustness data were considered.


Subject(s)
Food Contamination/analysis , Infant Formula/chemistry , Informatics , Limit of Detection , Miniaturization , Spectroscopy, Near-Infrared/methods , Triazines/analysis , Algorithms , Multivariate Analysis , Regression Analysis , Research Design
15.
Analyst ; 142(3): 455-464, 2017 Jan 26.
Article in English | MEDLINE | ID: mdl-27975094

ABSTRACT

In the present work the performances of one benchtop and two different types of miniaturized near-infrared (NIR)-spectrometers were tested and compared for the first time by the determination of the rosmarinic acid (RA) content of dried and powdered Rosmarini folium. The recorded NIR spectra were utilized in hyphenation with multivariate data analysis (MVA) to calculate Partial Least Squares (PLS) regression models. Quality parameters obtained from Cross Validation (CV) revealed that the benchtop NIR-device "NIRFlex N-500 FT-NIR spectrometer" achieved the best result with a R2 of 0.91 and a RPD of 3.27. The miniaturized NIR-device "MicroNIR 2200 spectrometer" showed a satisfying calibration quality with a R2 of 0.84 and a RPD of 2.46. The miniaturized NIR-device "ThermoScientific microPHAZIR" with a R2 of 0.73 and a RPD of 1.88 was less precise and needs to be improved. The measured spectra of the different devices were additionally investigated by two-dimensional correlation spectroscopy (2D-COS) analysis, which supported the performed PLS regression models as well as identified the discrepancies for microPHAZIR and MicroNIR 2200 compared to NIRFlex N-500. With the aim to obtain a better understanding of the factors which determine the analyzed PLS regression models, the NIR spectrum of RA was reproduced through application of fully anharmonic quantum chemical calculation. A good agreement between the experimental and theoretical NIR spectra and detailed band assignments of RA were obtained in the 8000-4000 cm-1 wavenumber region. Subsequently, this enabled us to attribute the main influences in the regression coefficients plots. This study demonstrated that the performance of NIR spectroscopy with benchtop and miniaturized devices as a fast and non-invasive technique is able to replace time- and resource-consuming analytical tools. Referring to the developed application of the RA content quantification this work is especially interesting for the continuous growing phytopharmaceutical industry and its quality control. The results reveal the importance of monitoring the performances of available NIR-spectrometers in every analytical area.


Subject(s)
Cinnamates/analysis , Depsides/analysis , Rosmarinus/chemistry , Spectroscopy, Near-Infrared , Calibration , Flowers/chemistry , Least-Squares Analysis , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...