Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(12): 108399, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047086

ABSTRACT

Precision oncology approaches for patients with colorectal cancer (CRC) continue to lag behind other solid cancers. Functional precision oncology-a strategy that is based on perturbing primary tumor cells from cancer patients-could provide a road forward to personalize treatment. We extend this paradigm to measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from patient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytometry-based profiling of the primary tumors, we characterize the tumor microenvironment (TME) and determine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a framework for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision (immuno-) oncology in CRC.

2.
Front Immunol ; 14: 1267816, 2023.
Article in English | MEDLINE | ID: mdl-37928527

ABSTRACT

Introduction: Naïve T cells remain in an actively maintained state of quiescence until activation by antigenic signals, upon which they start to proliferate and generate effector cells to initiate a functional immune response. Metabolic reprogramming is essential to meet the biosynthetic demands of the differentiation process, and failure to do so can promote the development of hypofunctional exhausted T cells. Methods: Here we used 13C metabolomics and transcriptomics to study the metabolism of CD8+ T cells in their complete course of differentiation from naïve over stem-like memory to effector cells and in exhaustion-inducing conditions. Results: The quiescence of naïve T cells was evident in a profound suppression of glucose oxidation and a decreased expression of ENO1, downstream of which no glycolytic flux was detectable. Moreover, TCA cycle activity was low in naïve T cells and associated with a downregulation of SDH subunits. Upon stimulation and exit from quiescence, the initiation of cell growth and proliferation was accompanied by differential expression of metabolic enzymes and metabolic reprogramming towards aerobic glycolysis with high rates of nutrient uptake, respiration and lactate production. High flux in anabolic pathways imposed a strain on NADH homeostasis, which coincided with engagement of the proline cycle for mitochondrial redox shuttling. With acquisition of effector functions, cells increasingly relied on glycolysis as opposed to oxidative phosphorylation, which was, however, not linked to changes in mitochondrial abundance. In exhaustion, decreased effector function concurred with a reduction in mitochondrial metabolism, glycolysis and amino acid import, and an upregulation of quiescence-associated genes, TXNIP and KLF2, and the T cell suppressive metabolites succinate and itaconate. Discussion: Overall, these results identify multiple metabolic features that regulate quiescence, proliferation and effector function, but also exhaustion of CD8+ T cells during differentiation. Thus, targeting these metabolic checkpoints may be a promising therapeutic strategy for both prevention of exhaustion and promotion of stemness of anti-tumor T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocyte Activation , Humans , Cell Differentiation , Biological Transport , Down-Regulation
3.
Hum Mol Genet ; 32(13): 2241-2250, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37027192

ABSTRACT

OBJECTIVE: In Friedreich's ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in an affected tissue sampled in vivo. METHODS: Skeletal muscle biopsies were collected from seven FRDA patients before and after treatment with recombinant human Erythropoietin (rhuEPO) within a clinical trial. Total RNA extraction, 3'-mRNA library preparation and sequencing were performed according to standard procedures. We tested for differential gene expression with DESeq2 and performed gene set enrichment analysis with respect to control subjects. RESULTS: FRDA transcriptomes showed 1873 genes differentially expressed from controls. Two main signatures emerged: (1) a global downregulation of the mitochondrial transcriptome as well as of ribosome/translational machinery and (2) an upregulation of genes related to transcription and chromatin regulation, especially of repressor terms. Downregulation of the mitochondrial transcriptome was more profound than previously shown in other cellular systems. Furthermore, we observed in FRDA patients a marked upregulation of leptin, the master regulator of energy homeostasis. RhuEPO treatment further enhanced leptin expression. INTERPRETATION: Our findings reflect a double hit in the pathophysiology of FRDA: a transcriptional/translational issue and a profound mitochondrial failure downstream. Leptin upregulation in the skeletal muscle in FRDA may represent a compensatory mechanism of mitochondrial dysfunction, which is amenable to pharmacological boosting. Skeletal muscle transcriptomics is a valuable biomarker to monitor therapeutic interventions in FRDA.


Subject(s)
Erythropoietin , Friedreich Ataxia , Animals , Humans , Transcriptome/genetics , Leptin/genetics , Friedreich Ataxia/pathology , Erythropoietin/genetics , RNA , Muscle, Skeletal/metabolism , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism
4.
Gut ; 72(1): 168-179, 2023 01.
Article in English | MEDLINE | ID: mdl-35365572

ABSTRACT

OBJECTIVE: Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN: IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS: IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION: Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Humans , Mice , Animals , Interleukin-11/metabolism , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Hepatitis, Alcoholic/metabolism , Ethanol/toxicity , Ethanol/metabolism , Hepatocytes/metabolism , Inflammation/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL
5.
Am J Pathol ; 191(6): 1094-1107, 2021 06.
Article in English | MEDLINE | ID: mdl-33705753

ABSTRACT

Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.


Subject(s)
CREB-Binding Protein/metabolism , Drug Resistance, Neoplasm/physiology , E1A-Associated p300 Protein/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Ribosomal Proteins/metabolism , Androgen Antagonists , Benzamides , Gene Expression Regulation, Neoplastic/physiology , Humans , Male , Nitriles , Phenylthiohydantoin
6.
Nat Immunol ; 21(10): 1160-1171, 2020 10.
Article in English | MEDLINE | ID: mdl-32747819

ABSTRACT

Autophagy supports both cellular and organismal homeostasis. However, whether autophagy should be inhibited or activated for cancer therapy remains unclear. Deletion of essential autophagy genes increased the sensitivity of mouse mammary carcinoma cells to radiation therapy in vitro and in vivo (in immunocompetent syngeneic hosts). Autophagy-deficient cells secreted increased amounts of type I interferon (IFN), which could be limited by CGAS or STING knockdown, mitochondrial DNA depletion or mitochondrial outer membrane permeabilization blockage via BCL2 overexpression or BAX deletion. In vivo, irradiated autophagy-incompetent mammary tumors elicited robust immunity, leading to improved control of distant nonirradiated lesions via systemic type I IFN signaling. Finally, a genetic signature of autophagy had negative prognostic value in patients with breast cancer, inversely correlating with mitochondrial abundance, type I IFN signaling and effector immunity. As clinically useful autophagy inhibitors are elusive, our findings suggest that mitochondrial outer membrane permeabilization may represent a valid target for boosting radiation therapy immunogenicity in patients with breast cancer.


Subject(s)
Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy/genetics , Breast Neoplasms/radiotherapy , DNA, Mitochondrial/genetics , Mammary Neoplasms, Animal/radiotherapy , Mitochondria/metabolism , Adult , Aged , Animals , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Humans , Interferon Type I/metabolism , Mammary Neoplasms, Animal/genetics , Mice , Mice, Inbred BALB C , Middle Aged , Prognosis , Radiation Tolerance , Signal Transduction , Survival Analysis
7.
Methods Mol Biol ; 2120: 129-145, 2020.
Article in English | MEDLINE | ID: mdl-32124316

ABSTRACT

Tumor neoantigens are at the core of immunological tumor control and response to immunotherapy. In silico prediction of tumor neoantigens from next-generation sequencing (NGS) data is possible but requires the assembly of complex, multistep computational pipelines and extensive data preprocessing. Using public data from two cancer cell lines, here we show how TIminer, a framework to perform immunogenomics analyses, can be easily used to assemble and run customized pipelines to predict cancer neoantigens from multisample NGS data.


Subject(s)
Antigens, Neoplasm/genetics , Genomics/methods , Neoplasms/genetics , Antigens, Neoplasm/immunology , Cell Line, Tumor , Computer Simulation , High-Throughput Nucleotide Sequencing/methods , Humans , Immunogenetic Phenomena , Models, Genetic , Neoplasms/immunology , Neoplasms/therapy , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...