Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Prod Rep ; 40(12): 1849-1873, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37585263

ABSTRACT

Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.


Subject(s)
Biological Products , Healthy Aging , Animals , Humans , Caenorhabditis elegans/metabolism , Biological Products/pharmacology , Biological Products/metabolism , Aging , Longevity , Mammals
2.
Front Mol Biosci ; 10: 1202394, 2023.
Article in English | MEDLINE | ID: mdl-37347040

ABSTRACT

A pigment-depleted extract from the heartwood of Pterocarpus santalinus L. f. (PS-DE) showed promising anti-SARS-CoV-2 activity with an IC50 of 29.9 µg/mL in Caco-2-F03 cells. To determine the potential active constituents within the extract prior to isolation, multi-informative molecular network (MN) was applied. Therefore, the extract was separated by high-performance counter-current chromatography (HPCCC) into 11 fractions which were subsequently tested for anti-SARS-CoV-2 activity and analysed by UPLC-tandem mass spectrometry (MS2). The resulting MN combines the bioactivity data of the fractions with the MS2 data. The MN analysis led to the targeted isolation of seven compounds including one pterocarpan (7) reported for the first time as constituent of P. santalinus and four so far undescribed natural products (NPs) that belong to the compound classes of arylpropanes (9), isoflavanones (10) coumestans (16) and 3-arylcoumarins (17), respectively. In total, 15 constituents from the heartwood of P. santalinus and one synthetic isoflavonoid that is structurally related to the natural metabolites were tested for anti-SARS-CoV-2 activity. Thereby, the two pterocarpans (-)-homopterocarpin (5) and (-)-medicarpin (2), the stilbene (E)-pterostilbene (1) and the isoflavonoid 7-O-methylgenistein (11) showed a distinct antiviral activity with IC50 values of 17.2, 33.4, 34.7, and 37.9 µM, respectively, and no cytotoxic effects against Caco-2-F03 cells (CC50 > 100 µM). In addition, a structure-activity relationship (SAR) was proposed indicating structural requirements of pterocarpans for anti-SARS-CoV-2 activity. The herein presented results support the implementation of multi-informative molecular networks as powerful tool for dereplication and targeted isolation of bioactive NPs.

3.
J Nat Prod ; 86(2): 264-275, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36651644

ABSTRACT

In this study, an integrated in silico-in vitro approach was employed to discover natural products (NPs) active against SARS-CoV-2. The two SARS-CoV-2 viral proteases, i.e., main protease (Mpro) and papain-like protease (PLpro), were selected as targets for the in silico study. Virtual hits were obtained by docking more than 140,000 NPs and NP derivatives available in-house and from commercial sources, and 38 virtual hits were experimentally validated in vitro using two enzyme-based assays. Five inhibited the enzyme activity of SARS-CoV-2 Mpro by more than 60% at a concentration of 20 µM, and four of them with high potency (IC50 < 10 µM). These hit compounds were further evaluated for their antiviral activity against SARS-CoV-2 in Calu-3 cells. The results from the cell-based assay revealed three mulberry Diels-Alder-type adducts (MDAAs) from Morus alba with pronounced anti-SARS-CoV-2 activities. Sanggenons C (12), O (13), and G (15) showed IC50 values of 4.6, 8.0, and 7.6 µM and selectivity index values of 5.1, 3.1 and 6.5, respectively. The docking poses of MDAAs in SARS-CoV-2 Mpro proposed a butterfly-shaped binding conformation, which was supported by the results of saturation transfer difference NMR experiments and competitive 1H relaxation dispersion NMR spectroscopy.


Subject(s)
Biological Products , COVID-19 , Humans , Viral Proteases , SARS-CoV-2 , Peptide Hydrolases , Antiviral Agents , Molecular Docking Simulation , Protease Inhibitors
4.
Planta Med ; 88(9-10): 794-804, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35915889

ABSTRACT

The 5'-adenosine monophosphate-activated protein kinase (AMPK) is an important metabolic regulator. Its allosteric drug and metabolite binding (ADaM) site was identified as an attractive target for direct AMPK activation and holds promise as a novel mechanism for the treatment of metabolic diseases. With the exception of lusianthridin and salicylic acid, no natural product (NP) is reported so far to directly target the ADaM site. For the streamlined assessment of direct AMPK activators from the pool of NPs, an integrated workflow using in silico and in vitro methods was applied. Virtual screening combining a 3D shape-based approach and docking identified 21 NPs and NP-like molecules that could potentially activate AMPK. The compounds were purchased and tested in an in vitro AMPK α 1 ß 1 γ 1 kinase assay. Two NP-like virtual hits were identified, which, at 30 µM concentration, caused a 1.65-fold (± 0.24) and a 1.58-fold (± 0.17) activation of AMPK, respectively. Intriguingly, using two different evaluation methods, we could not confirm the bioactivity of the supposed AMPK activator lusianthridin, which rebuts earlier reports.


Subject(s)
AMP-Activated Protein Kinases , AMP-Activated Protein Kinases/metabolism
5.
Front Pharmacol ; 13: 909285, 2022.
Article in English | MEDLINE | ID: mdl-35754463

ABSTRACT

Alkannin, shikonin (A/S) and their derivatives are naturally occurring hydroxynaphthoquinones biosynthesized in some species of the Boraginaceae family. These natural compounds have been extensively investigated for their biological properties over the last 40 years, demonstrating a plethora of activities, such as wound healing, regenerative, anti-inflammatory, antitumor, antimicrobial and antioxidant. This study aims to extend the current knowledge by investigating the effects of various A/S compounds on two model systems, namely on 3T3-L1 pre-adipocytes and the nematode Caenorhabditis elegans. The former constitutes an established in vitro model for investigating anti-obesity and insulin-mimetic properties, while the latter has been widely used as a model organism for studying fat accumulation, lifespan and the anthelmintic potential. A set of chemically well-defined A/S derivatives were screened for their effect on pre-adipocytes to assess cell toxicity, cell morphology, and cell differentiation. The differentiation of pre-adipocytes into mature adipocytes was examined upon treatment with A/S compounds in the presence/absence of insulin, aiming to establish a structure-activity relationship. The majority of A/S compounds induced cell proliferation at sub-micromolar concentrations. The ester derivatives exhibited higher IC50 values, and thus, proved to be less toxic to 3T3-L1 cells. The parent molecules, A and S tested at 1 µM resulted in a truncated differentiation with a reduced number of forming lipids, whereas compounds lacking the side chain hydroxyl group projected higher populations of mature adipocytes. In C. elegans mutant strain SS104, A/S enriched extracts were not able to inhibit the fat accumulation but resulted in a drastic shortage of survival. Thus, the set of A/S compounds were tested at 15 and 60 µg/ml in the wild-type strain N2 for their nematocidal activity, which is of relevance for the discovery of anthelmintic drugs. The most pronounced nematocidal activity was observed for naphthazarin and ß,ß-dimethyl-acryl-shikonin, followed by isovaleryl-shikonin. The latter 2 A/S esters were identified as the most abundant constituents in the mixture of A/S derivatives isolated from Alkanna tinctoria (L.) Tausch. Taken together, the findings show that the structural variations in the moiety of A/S compounds significantly impact the modulation of their biological activities in both model systems investigated in this study.

6.
Front Neurosci ; 16: 826289, 2022.
Article in English | MEDLINE | ID: mdl-35360162

ABSTRACT

Nemorosine A (1) and fargesine (2), the main azepine-indole alkaloids of Psychotria nemorosa, were explored for their pharmacological profile on neurodegenerative disorders (NDs) applying a combined in silico-in vitro-in vivo approach. By using 1 and 2 as queries for similarity-based searches of the ChEMBL database, structurally related compounds were identified to modulate the 5-HT2A receptor; in vitro experiments confirmed an agonistic effect for 1 and 2 (24 and 36% at 10 µM, respectively), which might be linked to cognition-enhancing properties. This and the previously reported target profile of 1 and 2, which also includes BuChE and MAO-A inhibition, prompted the evaluation of these compounds in several Caenorhabditis elegans models linked to 5-HT modulation and proteotoxicity. On C. elegans transgenic strain CL4659, which expresses amyloid beta (Aß) in muscle cells leading to a phenotypic paralysis, 1 and 2 reduced Aß proteotoxicity by reducing the percentage of paralyzed worms to 51%. Treatment of the NL5901 strain, in which α-synuclein is yellow fluorescent protein (YFP)-tagged, with 1 and 2 (10 µM) significantly reduced the α-synuclein expression. Both alkaloids were further able to significantly extend the time of metallothionein induction, which is associated with reduced neurodegeneration of aged brain tissue. These results add to the multitarget profiles of 1 and 2 and corroborate their potential in the treatment of NDs.

7.
Sci Rep ; 10(1): 12323, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32704017

ABSTRACT

In this study a robust, whole organism screening based on Caenorhabditis elegans is presented for the discovery of natural products (NP) with beneficial effects against obesity and age-related diseases. Several parameters of the elaborated workflow were optimized to be adapted for probing multicomponent mixtures combining knowledge from traditional medicine and NP chemistry by generating optimized small-scale extracts considering scarcity of the natural source, solubility issues, and potential assay interferences. The established miniaturized assay protocol allows for in vivo probing of small amounts of even complex samples (~ 1 mg) to test their ability to increase the nematodes' survival time and the suppression of fat accumulation assessed by Nile red staining as hall marks of "healthy aging". The workflow was applied on 24 herbal and fungal materials traditionally used against symptoms of the metabolic syndrome and revealed promising results for the extracts of Gardenia jasminoides fruits and the sclerotia from Inonotus obliquus. Tested at 100 µg/mL they were able to significantly reduce the Nile red fluorescence and extend the 50% survival rate (DT50) compared to the control groups. This phenotype-directed in vivo approach opens up new horizons for the selection of natural starting materials and the investigation of their active principles as fast drug discovery tool with predictive value for human diseases.


Subject(s)
Biological Products/pharmacology , Caenorhabditis elegans/metabolism , Mass Screening , Miniaturization , Agaricales/chemistry , Animals , Biological Assay , Caenorhabditis elegans/drug effects , Dimethyl Sulfoxide/pharmacology , Phenotype , Plant Extracts/pharmacology , Survival Analysis
8.
Bioorg Chem ; 95: 103495, 2020 01.
Article in English | MEDLINE | ID: mdl-31855822

ABSTRACT

Steroid sulfatase (STS) transforms hormone precursors into active steroids. Thus, it represents a target of intense research regarding hormone-dependent cancers. In this study, three ligand-based pharmacophore models were developed to identify STS inhibitors from natural sources. In a pharmacophore-based virtual screening of a curated molecular TCM database, lanostane-type triterpenes (LTTs) were predicted as STS ligands. Three traditionally used polypores rich in LTTs, i.e., Ganoderma lucidum Karst., Gloeophyllum odoratum Imazeki, and Fomitopsis pinicola Karst., were selected as starting materials. Based on eighteen thereof isolated LTTs a structure activity relationship for this compound class was established with piptolinic acid D (1), pinicolic acid B (2), and ganoderol A (3) being the most pronounced and first natural product STS inhibitors with IC50 values between 10 and 16 µM. Molecular docking studies proposed crucial ligand target interactions and a prediction tool for these natural compounds correlating with experimental findings.


Subject(s)
Enzyme Inhibitors/pharmacology , Lanosterol/pharmacology , Steryl-Sulfatase/antagonists & inhibitors , Triterpenes/pharmacology , Basidiomycota/chemistry , Coriolaceae/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Lanosterol/analogs & derivatives , Lanosterol/chemistry , Ligands , Models, Molecular , Molecular Structure , Reishi/chemistry , Steryl-Sulfatase/metabolism , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
9.
Prog Chem Org Nat Prod ; 110: 239-271, 2019.
Article in English | MEDLINE | ID: mdl-31621015

ABSTRACT

Cheminformatics-based techniques, such as molecular modeling, docking, virtual screening, and machine learning, are well accepted for their usefulness in drug discovery and development of therapeutically relevant small molecules. Although delayed by several decades, their application in natural product research has led to outstanding findings. Combining information obtained from different sources, i.e., virtual predictions, traditional medicine, structural, biochemical, and biological data, and handling big data effectively will open up new possibilities, but also challenges in the future. Strategies and examples will be presented on how to integrate cheminformatics in pharmacognostic workflows to benefit from these two highly complementary disciplines toward streamlining experimental efforts. While considering their limits and pitfalls and by exploiting their potential, computer-aided strategies should successfully guide future studies and thereby augment our knowledge of bioactive natural lead structures.


Subject(s)
Biological Products/pharmacology , Computational Biology , Models, Molecular , Chemistry, Pharmaceutical , Drug Discovery , Machine Learning
10.
Front Chem ; 6: 242, 2018.
Article in English | MEDLINE | ID: mdl-30013964

ABSTRACT

The G protein-coupled bile acid receptor (GPBAR1) has been recognized as a promising new target for the treatment of diverse diseases, including obesity, type 2 diabetes, fatty liver disease and atherosclerosis. The identification of novel and potent GPBAR1 agonists is highly relevant, as these diseases are on the rise and pharmacological unmet therapeutic needs are pervasive. Therefore, the aim of this study was to develop a proficient workflow for the in silico prediction of GPBAR1 activating compounds, primarily from natural sources. A protocol was set up, starting with a comprehensive collection of structural information of known ligands. This information was used to generate ligand-based pharmacophore models in LigandScout 4.08 Advanced. After theoretical validation, the two most promising models, namely BAMS22 and TTM8, were employed as queries for the virtual screening of natural product and synthetic small molecule databases. Virtual hits were progressed to shape matching experiments and physicochemical clustering. Out of 33 diverse virtual hits subjected to experimental testing using a reporter gene-based assay, two natural products, farnesiferol B (27) and microlobidene (28), were confirmed as GPBAR1 activators reaching more than 50% receptor activation at 20 µM with EC50s of 13.53 µM and 13.88 µM, respectively. This activity is comparable to that of the endogenous ligand lithocholic acid (1). Seven further virtual hits showed activity reaching at least 15% receptor activation either at 5 or 20 µM, including new scaffolds from natural and synthetic origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...