Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Physiol Meas ; 45(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38599226

ABSTRACT

Objective.Making up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited. However, literature demonstrating the impedance differences between benign and malignant skin cancers, as well as between different types of skin cancer, show that methods based on impedance differentiation may be promising.Approach.In this work, we propose a novel approach to rapid and non-invasive skin cancer diagnosis that leverages the technologies of difference-based electrical impedance tomography (EIT) and graphene electronic tattoos (GETs).Main results.We demonstrate the feasibility of this first-of-its-kind system using both computational numerical and experimental skin phantom models. We considered variations in skin cancer lesion impedance, size, shape, and position relative to the electrodes and evaluated the impact of using individual and multi-electrode GET (mGET) arrays. The results demonstrate that this approach has the potential to differentiate based on lesion impedance, size, and position, but additional techniques are needed to determine shape.Significance.In this way, the system proposed in this work, which combines both EIT and GET technology, exhibits potential as an entirely non-invasive and rapid approach to skin cancer diagnosis.


Subject(s)
Electric Impedance , Graphite , Phantoms, Imaging , Skin Neoplasms , Tomography , Graphite/chemistry , Tomography/instrumentation , Tomography/methods , Skin Neoplasms/diagnosis , Skin Neoplasms/diagnostic imaging , Humans , Electrodes , Tattooing
2.
Nano Lett ; 24(6): 1891-1900, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38150559

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.

3.
Curr HIV Res ; 21(6): 347-353, 2023.
Article in English | MEDLINE | ID: mdl-38058095

ABSTRACT

OBJECTIVE: The study aimed to compare the prevalence of surveillance HIV drug resistance mutations (SDRMs) across the main federal districts of Russia. METHODS: A pooled analysis was conducted to examine data on HIV primary drug resistance (HIV PrimDR). The analysis was based on published results primarily from Russian regional clinical and scientific laboratories, covering a span of 20 years. RESULTS: The findings indicate that three surveyed regions, namely Central, Far Eastern, and Volga, exhibit a low level of HIV PrimDR prevalence (not exceeding 5%), and this prevalence does not show a tendency to increase. In contrast, three major regions, namely Northwestern, Southern, and Siberian, demonstrate a significant and progressive increase in HIV PrimDR prevalence, with recent values surpassing 10%. CONCLUSION: Consequently, it was concluded that a change in the HIV treatment strategy in these regions is imperative, emphasizing the need to expedite the transition to the utilization of secondgeneration integrase inhibitors.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , HIV Infections/drug therapy , HIV Infections/epidemiology , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Mutation , Russia/epidemiology , Prevalence , Drug Resistance, Viral/genetics , Genotype
4.
ACS Nano ; 17(18): 18629-18640, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37703454

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the need for devices capable of carrying out rapid differential detection of viruses that may manifest similar physiological symptoms yet demand tailored treatment plans. Seasonal influenza may be exacerbated by COVID-19 infections, increasing the burden on healthcare systems. In this work, we demonstrate a technology based on liquid-gated graphene field-effect transistors (GFETs), for rapid and ultraprecise sensing and differentiation of influenza and SARS-CoV-2 surface protein. Most distinctively, the device consists of 4 onboard GFETs arranged in a quadruple architecture, where each quarter is functionalized individually (with either antibodies or chemically passivated control) but measured jointly. The sensor platform was tested against a range of concentrations of viral surface proteins from both viruses with the lowest tested and detected concentration at ∼50 ag/mL, or 88 zM for COVID-19 and 227 zM for Flu, which is 5-fold lower than the values reported previously on a similar platform. Unlike the classic real-time polymerase chain reaction test, which has a turnaround time of a few hours, the graphene technology presents an ultrafast response time of ∼10 s even in complex and clinically relevant media such as saliva. Thus, we have developed a multianalyte, highly sensitive, and fault-tolerant technology for rapid diagnostic of contemporary, emerging, and future pandemics.


Subject(s)
COVID-19 , Graphite , Influenza, Human , Humans , SARS-CoV-2 , COVID-19/diagnosis , Antibodies
5.
Pathogens ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37513727

ABSTRACT

More than 50% of all people living with HIV worldwide are women. Globally, HIV/AIDS is the leading cause of death among women aged 15 to 44. The safe and effective methods of hormonal contraception are an essential component of preventive medical care in order to reduce maternal and infant mortality. However, there is limited knowledge regarding the effect of hormones on the rate of viral replication in HIV infection, especially non-B subtypes. The goal of the present work was to study in vitro how the female hormones ß-estradiol and progesterone affect the replication of the HIV-1 subtypes A6, CRF02_AG, and B. The findings show that high doses of hormones enhanced the replication of HIV-1 sub-subtype A6 by an average of 1.75 times and the recombinant variant CRF02_AG by 1.4 times but did not affect the replication of HIV-1 subtype B. No difference was detected in the expression of CCR5 and CXCR4 co-receptors on the cell surface, either in the presence or absence of hormones. However, one of the reasons for the increased viral replication could be the modulated TLRs secretion, as it was found that high doses of estradiol and progesterone upregulated, to varying degrees, the expression of TLR2 and TLR9 genes in the PBMCs of female donors infected with HIV-1 sub-subtype A6.

6.
Front Bioeng Biotechnol ; 11: 1168667, 2023.
Article in English | MEDLINE | ID: mdl-37256116

ABSTRACT

Graphene, a 2D carbon allotrope, is revolutionizing many biomedical applications due to its unique mechanical, electrical, thermal, and optical properties. When bioengineers realized that these properties could dramatically enhance the performance of cardiac sensors and actuators and may offer fundamentally novel technological capabilities, the field exploded with numerous studies developing new graphene-based systems and testing their limits. Here we will review the link between specific properties of graphene and mechanisms of action of cardiac sensors and actuators, analyze the performance of these systems from inaugural studies to the present, and offer future perspectives.

7.
Viruses ; 15(4)2023 04 18.
Article in English | MEDLINE | ID: mdl-37112971

ABSTRACT

In Russia, antiretroviral therapy (ART) coverage has significantly increased, which, in the absence of routine genotyping testing, could lead to an increase in HIV drug resistance (DR). The aim of this study was to investigate the patterns and temporal trends in HIV DR as well as the prevalence of genetic variants in treatment-naïve patients from 2006 to 2022, using data from the Russian database (4481 protease and reverse transcriptase and 844 integrase gene sequences). HIV genetic variants, and DR and DR mutations (DRMs) were determined using the Stanford Database. The analysis showed high viral diversity, with the predominance of A6 (78.4%), which was the most common in all transmission risk groups. The overall prevalence of surveillance DRMs (SDRMs) was 5.4%, and it reached 10.0% in 2022. Most patients harbored NNRTI SDRMs (3.3%). The prevalence of SDRMs was highest in the Ural (7.9%). Male gender and the CRF63_02A6 variant were association factors with SDRMs. The overall prevalence of DR was 12.7% and increased over time, primarily due to NNRTIs. Because baseline HIV genotyping is unavailable in Russia, it is necessary to conduct surveillance of HIV DR due to the increased ART coverage and DR prevalence. Centralized collection and unified analysis of all received genotypes in the national database can help in understanding the patterns and trends in DR to improve treatment protocols and increase the effectiveness of ART. Moreover, using the national database can help identify regions or transmission risk groups with a high prevalence of HIV DR for epidemiological measures to prevent the spread of HIV DR in the country.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Male , HIV-1/genetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , Mutation , Genotype , Prevalence , Russia/epidemiology
8.
Adv Mater ; 35(22): e2212190, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965107

ABSTRACT

Heart rhythm disorders, known as arrhythmias, cause significant morbidity and are one of the leading causes of mortality. Cardiac arrhythmias are frequently treated by implantable devices, such as pacemakers and defibrillators, or by ablation therapy guided by electroanatomical mapping. Both implantable and ablation therapies require sophisticated biointerfaces for electrophysiological measurements of electrograms and delivery of therapeutic stimulation or ablation energy. In this work, a graphene biointerface for in vivo cardiac electrophysiology is reported for the first time. Leveraging sub-micrometer-thick tissue-conformable graphene arrays, sensing and stimulation of the open mammalian heart are demonstrated both in vitro and in vivo. Furthermore, the graphene biointerface treatment of atrioventricular block (the kind of arrhythmia where the electrical conduction from the atria to the ventricles is interrupted) is demonstrated. The graphene arrays show effective electrochemical properties, namely interface impedance down to 40 Ω cm2 at 1 kHz, charge storage capacity up to 63.7 mC cm-2 , and charge injection capacity up to 704 µC cm-2 . Transparency of the graphene structures allows for simultaneous optical mapping of cardiac action potentials, calcium transients, and optogenetic stimulation while performing electrical measurements and stimulation. The report presents evidence of the significant potential of graphene biointerfaces for advanced cardiac electrophysiology and arrhythmia therapy.


Subject(s)
Graphite , Animals , Humans , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Heart , Heart Ventricles , Mammals
9.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36892156

ABSTRACT

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Subject(s)
Wearable Electronic Devices , Humans , Quality of Life
10.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674980

ABSTRACT

Viruses cause various infections that may affect human lifestyle for durations ranging from several days to for many years. Although preventative and therapeutic remedies are available for many viruses, they may still have a profound impact on human life. The human immunodeficiency virus type 1 is the most common cause of HIV infection, which represents one of the most dangerous and complex diseases since it affects the immune system and causes its disruption, leading to secondary complications and negatively influencing health-related quality of life. While highly active antiretroviral therapy may decrease the viral load and the velocity of HIV infection progression, some individual peculiarities may affect viral load control or the progression of T-cell malfunction induced by HIV. Our study is aimed at the text-based identification of molecular mechanisms that may be involved in viral infection progression, using HIV as a case study. Specifically, we identified human proteins and genes which commonly occurred, overexpressed or underexpressed, in the collections of publications relevant to (i) HIV infection progression and (ii) acute and chronic stages of HIV infection. Then, we considered biological processes that are controlled by the identified protein and genes. We verified the impact of the identified molecules in the associated clinical study.


Subject(s)
HIV Infections , HIV-1 , Humans , Quality of Life , Antiretroviral Therapy, Highly Active , Data Mining , Viral Load
11.
Biosens Bioelectron ; 222: 114993, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36525710

ABSTRACT

The organized self-assembly of conductive biological structures holds promise for creating new bioelectronic devices. In particular, Geobacter sulfurreducens type IVa pili have proven to be a versatile material for fabricating protein nanowire-based devices. To scale the production of conductive pili, we designed a strain of Shewanella oneidensis that heterologously expressed abundant, conductive Geobacter pili when grown aerobically in liquid culture. S. oneidensis expressing a cysteine-modified pilin, designed to enhance the capability to bind to gold, generated conductive pili that self-assembled into biohybrid filaments in the presence of gold nanoparticles. Elemental composition analysis confirmed the filament-metal interactions within the structures, which were several orders of magnitude larger than previously described metal:organic filaments. The results demonstrate that the S. oneidensis chassis significantly advances the possibilities for facile conductive protein nanowire design and fabrication.


Subject(s)
Biosensing Techniques , Geobacter , Metal Nanoparticles , Gold , Fimbriae, Bacterial/metabolism , Electron Transport
12.
Viruses ; 14(11)2022 10 22.
Article in English | MEDLINE | ID: mdl-36366418

ABSTRACT

The increased antiretroviral therapy (ART) coverage of patients in the absence of routine genotyping tests and in the context of active labor migration highlight the importance of HIV-1 drug resistance (DR) surveillance in Armenia. We conducted a two-phase pretreatment DR (PDR) study in 2017-2018 (phase I; 120 patients) and 2020-2021 (phase II; 133 patients) according to the WHO-approved protocol. The analysis of HIV-1 genetic variants showed high degrees of viral diversity, with the predominance of A6. The prevalence of any PDR was 9.2% in phase I and 7.5% in phase II. PDR to protease inhibitors was found only in 0.8% in phase II. PDR to efavirenz and nevirapine was found among 5.0% and 6.7% of patients in phase I, and 6.0% and 6.8% of patients in phase II, respectively. The prevalence of PDR to nucleoside reverse-transcriptase inhibitors decreased from 5.0% in phase I to 0.8% in phase II. In addition, we identified risk factors associated with the emergence of DR-male, MSM, subtype B, and residence in or around the capital of Armenia-and showed the active spread of HIV-1 among MSM in transmission clusters, i.e., harboring DR, which requires the immediate attention of public health policymakers for the prevention of HIV-1 DR spread in the country.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Sexual and Gender Minorities , Humans , Male , Pregnancy , Female , HIV-1/genetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , Prevalence , Homosexuality, Male , Armenia/epidemiology , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/prevention & control , World Health Organization , Genotype , Mutation
13.
Nat Commun ; 13(1): 4386, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902599

ABSTRACT

CMOS-based computing systems that employ the von Neumann architecture are relatively limited when it comes to parallel data storage and processing. In contrast, the human brain is a living computational signal processing unit that operates with extreme parallelism and energy efficiency. Although numerous neuromorphic electronic devices have emerged in the last decade, most of them are rigid or contain materials that are toxic to biological systems. In this work, we report on biocompatible bilayer graphene-based artificial synaptic transistors (BLAST) capable of mimicking synaptic behavior. The BLAST devices leverage a dry ion-selective membrane, enabling long-term potentiation, with ~50 aJ/µm2 switching energy efficiency, at least an order of magnitude lower than previous reports on two-dimensional material-based artificial synapses. The devices show unique metaplasticity, a useful feature for generalizable deep neural networks, and we demonstrate that metaplastic BLASTs outperform ideal linear synapses in classic image classification tasks. With switching energy well below the 1 fJ energy estimated per biological synapse, the proposed devices are powerful candidates for bio-interfaced online learning, bridging the gap between artificial and biological neural networks.


Subject(s)
Graphite , Electronics , Humans , Long-Term Potentiation , Neural Networks, Computer , Synapses , Transistors, Electronic
14.
Virus Evol ; 8(1): veac044, 2022.
Article in English | MEDLINE | ID: mdl-35775027

ABSTRACT

The HIV/AIDS epidemic in Russia is growing, with approximately 100,000 people infected annually. Molecular epidemiology can provide insight into the structure and dynamics of the epidemic. However, its applicability in Russia is limited by the weakness of genetic surveillance, as viral genetic data are only available for <1 per cent of cases. Here, we provide a detailed description of the HIV-1 epidemic for one geographic region of Russia, Oryol Oblast, by collecting and sequencing viral samples from about a third of its known HIV-positive population (768 out of 2,157 patients). We identify multiple introductions of HIV-1 into Oryol Oblast, resulting in eighty-two transmission lineages that together comprise 66 per cent of the samples. Most introductions are of subtype A (315/332), the predominant HIV-1 subtype in Russia, followed by CRF63 and subtype B. Bayesian analysis estimates the effective reproduction number Re for subtype A at 2.8 [1.7-4.4], in line with a growing epidemic. The frequency of CRF63 has been growing more rapidly, with the median Re of 11.8 [4.6-28.7], in agreement with recent reports of this variant rising in frequency in some regions of Russia. In contrast to the patterns described previously in European and North American countries, we see no overrepresentation of males in transmission lineages; meanwhile, injecting drug users are overrepresented in transmission lineages. This likely reflects the structure of the HIV-1 epidemic in Russia dominated by heterosexual and, to a smaller extent, people who inject drugs transmission. Samples attributed to men who have sex with men (MSM) transmission are associated with subtype B and are less prevalent than expected from the male-to-female ratio for this subtype, suggesting underreporting of the MSM transmission route. Together, our results provide a high-resolution description of the HIV-1 epidemic in Oryol Oblast, Russia, characterized by frequent interregional transmission, rapid growth of the epidemic, and rapid displacement of subtype A with the recombinant CRF63 variant.

15.
Nat Nanotechnol ; 17(8): 864-870, 2022 08.
Article in English | MEDLINE | ID: mdl-35725927

ABSTRACT

Continuous monitoring of arterial blood pressure (BP) in non-clinical (ambulatory) settings is essential for understanding numerous health conditions, including cardiovascular diseases. Besides their importance in medical diagnosis, ambulatory BP monitoring platforms can advance disease correlation with individual behaviour, daily habits and lifestyle, potentially enabling analysis of root causes, prognosis and disease prevention. Although conventional ambulatory BP devices exist, they are uncomfortable, bulky and intrusive. Here we introduce a wearable continuous BP monitoring platform that is based on electrical bioimpedance and leverages atomically thin, self-adhesive, lightweight and unobtrusive graphene electronic tattoos as human bioelectronic interfaces. The graphene electronic tattoos are used to monitor arterial BP for >300 min, a period tenfold longer than reported in previous studies. The BP is recorded continuously and non-invasively, with an accuracy of 0.2 ± 4.5 mm Hg for diastolic pressures and 0.2 ± 5.8 mm Hg for systolic pressures, a performance equivalent to Grade A classification.


Subject(s)
Graphite , Tattooing , Arterial Pressure , Blood Pressure Determination , Blood Pressure Monitoring, Ambulatory , Humans
16.
Pathogens ; 11(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35631067

ABSTRACT

Ritonavir-boosted atazanavir is an option for second-line therapy in low- and middle-income countries (LMICs). We analyzed publicly available HIV-1 protease sequences from previously PI-naïve patients with virological failure (VF) following treatment with atazanavir. Overall, 1497 patient sequences were identified, including 740 reported in 27 published studies and 757 from datasets assembled for this analysis. A total of 63% of patients received boosted atazanavir. A total of 38% had non-subtype B viruses. A total of 264 (18%) sequences had a PI drug-resistance mutation (DRM) defined as having a Stanford HIV Drug Resistance Database mutation penalty score. Among sequences with a DRM, nine major DRMs had a prevalence >5%: I50L (34%), M46I (33%), V82A (22%), L90M (19%), I54V (16%), N88S (10%), M46L (8%), V32I (6%), and I84V (6%). Common accessory DRMs were L33F (21%), Q58E (16%), K20T (14%), G73S (12%), L10F (10%), F53L (10%), K43T (9%), and L24I (6%). A novel nonpolymorphic mutation, L89T occurred in 8.4% of non-subtype B, but in only 0.4% of subtype B sequences. The 264 sequences included 3 (1.1%) interpreted as causing high-level, 14 (5.3%) as causing intermediate, and 27 (10.2%) as causing low-level darunavir resistance. Atazanavir selects for nine major and eight accessory DRMs, and one novel nonpolymorphic mutation occurring primarily in non-B sequences. Atazanavir-selected mutations confer low-levels of darunavir cross resistance. Clinical studies, however, are required to determine the optimal boosted PI to use for second-line and potentially later line therapy in LMICs.

17.
PLoS One ; 17(1): e0257731, 2022.
Article in English | MEDLINE | ID: mdl-35061671

ABSTRACT

BACKGROUND: Eastern Europe and Central Asia (EECA) is one of the regions where the HIV epidemic continues to grow at a concerning rate. Antiretroviral therapy (ART) coverage in EECA countries has significantly increased during the last decade, which can lead to an increase in the risk of emergence, transmission, and spread of HIV variants with drug resistance (DR) that cannot be controlled. Because HIV genotyping cannot be performed in these countries, data about HIV DR are limited or unavailable. OBJECTIVES: To monitor circulating HIV-1 genetic variants, assess the prevalence of HIV DR among patients starting antiretroviral therapy, and reveal potential transmission clusters among patients in six EECA countries: Armenia, Azerbaijan, Belarus, Russia, Tajikistan, and Uzbekistan. MATERIALS AND METHODS: We analyzed 1071 HIV-1 pol-gene fragment sequences (2253-3369 bp) from patients who were initiating or reinitiating first-line ART in six EECA counties, i.e., Armenia (n = 120), Azerbaijan (n = 96), Belarus (n = 158), Russia (n = 465), Tajikistan (n = 54), and Uzbekistan (n = 178), between 2017 and 2019. HIV Pretreatment DR (PDR) and drug resistance mutation (DRM) prevalence was estimated using the Stanford HIV Resistance Database. The PDR level was interpreted according to the WHO standard PDR survey protocols. HIV-1 subtypes were determined using the Stanford HIV Resistance Database and subsequently confirmed by phylogenetic analysis. Transmission clusters were determined using Cluster Picker. RESULTS: Analyses of HIV subtypes showed that EECA, in general, has the same HIV genetic variants of sub-subtype A6, CRF63_02A1, and subtype B, with different frequencies and representation for each country. The prevalence of PDR to any drug class was 2.8% in Uzbekistan, 4.2% in Azerbaijan, 4.5% in Russia, 9.2% in Armenia, 13.9% in Belarus, and 16.7% in Tajikistan. PDR to protease inhibitors (PIs) was not detected in any country. PDR to nucleoside reverse-transcriptase inhibitors (NRTIs) was not detected among patients in Azerbaijan, and was relatively low in other countries, with the highest prevalence in Tajikistan (5.6%). The prevalence of PDR to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) was the lowest in Uzbekistan (2.8%) and reached 11.1% and 11.4% in Tajikistan and Belarus, respectively. Genetic transmission network analyses identified 226/1071 (21.1%) linked individuals, forming 93 transmission clusters mainly containing two or three sequences. We found that the time since HIV diagnosis in clustered patients was significantly shorter than that in unclustered patients (1.26 years vs 2.74 years). Additionally, the K103N/S mutation was mainly observed in clustered sequences (6.2% vs 2.8%). CONCLUSIONS: Our study demonstrated different PDR prevalence rates and DR dynamics in six EECA countries, with worrying levels of PDR in Tajikistan and Belarus, where prevalence exceeded the 10% threshold recommended by the WHO for immediate public health action. Because DR testing for clinical purposes is not common in EECA, it is currently extremely important to conduct surveillance of HIV DR in EECA due to the increased ART coverage in this region.


Subject(s)
HIV-1
18.
Adv Mater ; 34(3): e2106615, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34751484

ABSTRACT

A major challenge for graphene applications is the lack of mass production technology for large-scale and high-quality graphene growth and transfer. Here, a roll-to-roll (R2R) dry transfer process for large-scale graphene grown by chemical vapor deposition is reported. The process is fast, controllable, and environmentally benign. It avoids chemical contamination and allows the reuse of graphene growth substrates. By controlling tension and speed of the R2R dry transfer process, the electrical sheet resistance is achieved as 9.5 kΩ sq-1 , the lowest ever reported among R2R dry transferred graphene samples. The R2R dry transferred samples are used to fabricate graphene-based field-effect transistors (GFETs) on polymer. It is demonstrated that these flexible GFETs feature a near-zero doping level and a gate leakage current one to two orders of magnitude lower than those fabricated using wet-chemical etched graphene samples. The scalability and uniformity of the R2R dry transferred graphene is further demonstrated by successfully transferring a 3 × 3 in2 sample and measuring its field-effect mobility with 36 millimeter-scaled GFETs evenly spaced on the sample. The field-effect mobility of the R2R dry transferred graphene is determined to be 205 ± 36 cm2  V-1 .

19.
Biosens Bioelectron ; 200: 113890, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34953205

ABSTRACT

Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal health and, consequently, economics. The easy-to-use, on-site, on-demand, and rapid monitoring of mycotoxins in food/feed is highly desired. In this work, we report on an advanced mycotoxin biosensor based on an array of graphene field-effect transistors integrated on a single silicon chip. A specifically designed aptamer against ochratoxin A (OTA) was used as a recognition element, where it was covalently attached to graphene surface via pyrenebutanoic acid, succinimidyl ester (PBASE) chemistry. Namely, an electric field stimulation was used to promote more efficient π-π stacking of PBASE to graphene. The specific G-rich aptamer strand suggest its π-π stacking on graphene in free-standing regime and reconfiguration in G-quadruplex during binding an OTA molecule. This realistic behavior of the aptamer is sensitive to the ionic strength of the analyte solution, demonstrating a 10-fold increase in sensitivity at low ionic strengths. The graphene-aptamer sensors reported here demonstrate fast assay with the lowest detection limit of 1.4 pM for OTA within a response time as low as 10 s, which is more than 30 times faster compared to any other reported aptamer-based methods for mycotoxin detection. The sensors hold comparable performance when operated in real-time within a complex matrix of wine without additional time-consuming pre-treatment.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Ochratoxins , Wine , Animals , Humans , Limit of Detection , Ochratoxins/analysis , Wine/analysis
20.
Front Bioeng Biotechnol ; 9: 797340, 2021.
Article in English | MEDLINE | ID: mdl-34950649

ABSTRACT

Cardiac tissue engineering requires materials that can faithfully recapitulate and support the native in vivo microenvironment while providing a seamless bioelectronic interface. Current limitations of cell scaffolds include the lack of electrical conductivity and suboptimal mechanical properties. Here we discuss how the incorporation of graphene into cellular scaffolds, either alone or in combination with other materials, can affect morphology, function, and maturation of cardiac cells. We conclude that graphene-based scaffolds hold great promise for cardiac tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...