Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 89: 102459, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002290

ABSTRACT

Testicular torsion is an urological emergency and can lead to ischemia damage and testicular loss if not diagnosed in time. Proanthocyanidin is reported to have anti-inflammatory and antioxidant properties. The current study aimed to examine the possible effects of proanthocyanidin (P) on the testis in torsion/detorsion (T/D)-induced testicular ischemia/reperfusion (I/R) injury in rats. Forty rats were divided into four groups (n=10 for each): sham-operated (sham), I/R, I/R + P100 (100 mg/kg, 30 min before torsion), and I/R + P200 (200 mg/kg, 30 min before torsion). Testicular T/D was performed on the left testicle by 3 hours of torsion at 720° clockwise, followed by 3 hours of detorsion. In the I/R group, an increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH), vitamin C (Vit C), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD) values were determined compared to the sham group (p<0.001). Moreover, an increase in the expression of cleaved caspase-3 and Bcl2-associated X protein (Bax), a decrease in the expression of B-cell lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were detected in the I/R group (p<0.001). Histopathologically, it was determined that the Johnsen and Cosentino scores of the testicles were irregular in the I/R group (p<0.001). Proanthocyanidin treatment caused a decrease in MDA, cleaved caspase-3 and Bax levels and an increase in GSH, Vit C, GPx, G6PD, Bcl-2 and PCNA values. Additionally, Johnsen and Cosentino rearranged the scores. The present findings revealed the protective and curative effects of proanthocyanidin in organ damage due to testicular torsion/detorsion-induced ischemia/reperfusion with their antioxidative and antiapoptotic properties.

2.
ACS Omega ; 9(19): 21187-21203, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764625

ABSTRACT

This study reports the fabrication and characterization of poly(vinyl alcohol) (PVA) and gelatin (Gel)-based nanofiber membranes cross-linked with citric acid (CA) by a green electrospinning method in which nano 45S5 bioglass (BG) and urea were incorporated. Various combinations of PVA, gelatin, and BG were prepared, and nanofiber membranes with average fiber diameters between 238 and 595 nm were fabricated. Morphological, chemical, and mechanical properties, porosity, swelling, water retention, and water vapor transmission rate of the fabricated membranes were evaluated. PVA:Gel (90:10), 15% CA, and 3% BG were determined as the optimum blend for nanofiber membrane fabrication via electrospinning. The membrane obtained using this blend was further functionalized with 10% w/w polymer urea coating by the electrospray method following the cross-linking. In vitro biocompatibility tests revealed that the fabricated membranes were all biocompatible except for the one that functionalized with urea. In vivo macroscopic and histopathological analysis results of PVA/Gel/BG and PVA/Gel/BG/Urea treated wounds indicated increased collagenization and vascularization and had an anti-inflammatory effect. Furthermore, careful examination of the in vivo macroscopic results of the PVA/Gel/BG/Urea membrane indicated its potential to decrease uneven scar formation. In conclusion, developed PVA/Gel/BG and PVA/Gel/BG/Urea electrospun membranes with multifunctional and biomimetic features may have the potential to be used as beneficial wound dressings.

3.
Toxicol Mech Methods ; 34(4): 413-422, 2024 May.
Article in English | MEDLINE | ID: mdl-38115227

ABSTRACT

Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1ß), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1ß, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.


Subject(s)
Gentamicins , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Gentamicins/toxicity , Eucalyptol/metabolism , Eucalyptol/pharmacology , Eucalyptol/therapeutic use , Caspase 3/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Kidney , Oxidative Stress , Antioxidants/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL