Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38446738

ABSTRACT

The family of Janus Kinases (JAKs) associated with the JAK-signal transducers and activators of transcription signaling pathway plays a vital role in the regulation of various cellular processes. The conformational change of JAKs is the fundamental steps for activation, affecting multiple intracellular signaling pathways. However, the transitional process from inactive to active kinase is still a mystery. This study is aimed at investigating the electrostatic properties and transitional states of JAK1 to a fully activation to a catalytically active enzyme. To achieve this goal, structures of the inhibited/activated full-length JAK1 were modelled and the energies of JAK1 with Tyrosine Kinase (TK) domain at different positions were calculated, and Dijkstra's method was applied to find the energetically smoothest path. Through a comparison of the energetically smoothest paths of kinase inactivating P733L and S703I mutations, an evaluation of the reasons why these mutations lead to negative or positive regulation of JAK1 are provided. Our energy analysis suggests that activation of JAK1 is thermodynamically spontaneous, with the inhibition resulting from an energy barrier at the initial steps of activation, specifically the release of the TK domain from the inhibited Four-point-one, Ezrin, Radixin, Moesin-PK cavity. Overall, this work provides insights into the potential pathway for TK translocation and the activation mechanism of JAK1.


Subject(s)
Signal Transduction , Mutation , Protein Domains
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569303

ABSTRACT

Janus tyrosine kinase 3 (JAK3) is primarily expressed in immune cells and is needed for signaling by the common gamma chain (γc) family of cytokines. Abnormal JAK3 signal transduction can manifest as hematological disorders, e.g., leukemia, severe combined immunodeficiency (SCID) and autoimmune disease states. While regulatory JAK3 phosphosites have been well studied, here a functional proteomics approach coupling a JAK3 autokinase assay to mass spectrometry revealed ten previously unreported autophosphorylation sites (Y105, Y190, Y238, Y399, Y633, Y637, Y738, Y762, Y824, and Y841). Of interest, Y841 was determined to be evolutionarily conserved across multiple species and JAK family members, suggesting a broader role for this residue. Phospho-substitution mutants confirmed that Y841 is also required for STAT5 tyrosine phosphorylation. The homologous JAK1 residue Y894 elicited a similar response to mutagenesis, indicating the shared importance for this site in JAK family members. Phospho-specific Y841-JAK3 antibodies recognized activated kinase from various T-cell lines and transforming JAK3 mutants. Computational biophysics analysis linked Y841 phosphorylation to enhanced JAK3 JH1 domain stability across pH environments, as well as to facilitated complementary electrostatic JH1 dimer formation. Interestingly, Y841 is not limited to tyrosine kinases, suggesting it represents a conserved ubiquitous enzymatic function that may hold therapeutic potential across multiple kinase families.


Subject(s)
STAT5 Transcription Factor , Signal Transduction , Phosphorylation , STAT5 Transcription Factor/genetics , Janus Kinase 1/genetics , Protein Processing, Post-Translational , Tyrosine/metabolism
3.
Life (Basel) ; 13(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37109511

ABSTRACT

Janus Kinase 3 (JAK3) plays a key role in the development, proliferation, and differentiation of various immune cells. It regulates gene expression by phosphorylation of Signal Transducers and Activators of Transcriptions (STATs) via the JAK/STAT pathway. Recently, we found a new JAK3 phosphorylation site, tyrosine 841 (Y841). The results showed that pY841 helps the kinase domain flip around the pseudo kinase domain, which may cause JAK3 conformational changes. It also reduces the size of the cleft between the N-lobe and the C-lobe of the JAK3 kinase domain. However, pY841 was found to enlarge the cleft when ATP/ADP was bound to the kinase. The increase in the cleft size suggested that pY841 enhanced the elasticity of the kinase domain. For unphosphorylated JAK3 (JAK3-Y841), the binding forces between the kinase domain and ATP or ADP were similar. After phosphorylation of Y841, JAK3-pY841 exhibited more salt bridges and hydrogen bonds between ATP and the kinase than between ADP and the kinase. Consequently, the electrostatic binding force between ATP and the kinase was higher than that between ADP and the kinase. The result was that compared to ADP, ATP was more attractive to JAK3 when Y841 was phosphorylated. Therefore, JAK3-pY841 tended to bind ATP rather than ADP. This work provides new insights into the role of phosphorylation in kinase activation and ATP hydrolysis and sheds light on the importance of understanding the molecular mechanisms that regulate the kinase function.

4.
Article in English | MEDLINE | ID: mdl-34299796

ABSTRACT

Next-generation sequencing (NGS) has identified unique biomarkers yielding new strategies in precision medicine for the treatment of Acute lymphoblastic leukemia (ALL). Hispanics show marked health disparities in ALL, often absent in clinical trials or cancer research. Thus, it is unknown whether Hispanics would benefit equally from curated data currently guiding precision oncology. Using whole-exome sequencing, nine ALL patients were screened for mutations within genes known to possess diagnostic, prognostic and therapeutic value. Genes mutated in Hispanic ALL patients from the borderland were mined for potentially pathogenic variants within clinically relevant genes. KRAS G12A was detected in this unique cohort and its frequency in Hispanics from the TARGET-ALL Phase II database was three-fold greater than that of non-Hispanics. STAT5B N642H was also detected with low frequency in Hispanic and non-Hispanic individuals within TARGET. Its detection within this small cohort may reflect a common event in this demographic. Such variants occurring in the MAPK and JAK/STAT pathways may be contributing to Hispanic health disparities in ALL. Notable variants in ROS1, WT1, and NOTCH2 were observed in the ALL borderland cohort, with NOTCH2 C19W occurring most frequently. Further investigations on the pathogenicity of these variants are needed to assess their relevance in ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein-Tyrosine Kinases , Genomics , Humans , Mexico , Mutation , Precision Medicine , Proto-Oncogene Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...