Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ageing Res Rev ; 94: 102171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141735

ABSTRACT

Parkinson's Disease (PD) is becoming a growing global concern by being the second most prevalent disease next to Alzheimer's Disease (AD). Henceforth new exploration is needed in search of new aspects towards the disease mechanism and origin. Evidence from recent studies has clearly stated the role of Gut Microbiota (GM) in the maintenance of the brain and as a root cause of various diseases and disorders including other neurological conditions. In the case of PD, with an unknown etiology, the GM is said to have a larger impact on the disease pathophysiology. Although GM and its metabolites are crucial for maintaining the normal physiology of the host, it is an undeniable fact that there is an influence of GM in the pathophysiology of PD. As such the Enteroendocrine Cells (EECs) in the epithelium of the intestine are one of the significant regulators of the gut-brain axis and act as a communication mediator between the gut and the brain. The communication is established via the molecules of neuroendocrine which are said to have a crucial part in neurological diseases such as AD, PD, and other psychiatry-related disorders. This review is focused on understanding the proper role of GM and EECs in PD. Here, we also focus on some of the metabolites and compounds that can interact with the PD genes causing various dysfunctions in the cell and facilitating the disease conditions using bioinformatical tools. Various mechanisms concerning EECs and PD, their identification, the latest studies, and available current therapies have also been discussed.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Parkinson Disease , Humans , Brain-Gut Axis , Brain
2.
Mol Neurobiol ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040995

ABSTRACT

The influence of various risk factors such as aging, intricate cellular molecular processes, and lifestyle factors like smoking, alcohol consumption, caffeine intake, and occupational factors has received increased focus in relation to the risk and development of Parkinson's disease (PD). Limited research has been conducted on the assessment of lifestyle impact on kynurenine 3-monooxygenase (KMO) gene in PD. A total of 164 subjects, including 82 PD cases and 82 healthy individuals, were recruited based on specific inclusion and exclusion criteria. The severity of PD and clinical assessment were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (HY) scaling. Sanger sequencing was performed to analyse the KMO gene in the recruited subjects, and case-control studies were conducted. The UPDRS assessment revealed significant impairments in smell, tremors, walking, and posture instability in the late-onset PD cohorts. The HY scaling indicated a higher proportion of late-onset cohorts in stage 2. Moreover, both alcoholic and non-alcoholic groups showed significantly increased levels of 3-HK in late-onset PD. Gene analysis identified missense variants at position g.241593373 T > A (rs752312199) and intronic variants at positions g.241592623A > G (rs640718), g.241592800C > A (rs990388262), g.241592802A > C (rs1350160268), g.241592808 T > C (rs1478255936), and g.241592812G > T (rs948928931). The alterations in the KMO gene were found to influence the levels of kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). Genomic analysis revealed a high prevalence of missense mutations in the late-onset PD groups, leading to a decline in 3-HK levels in patients. This leads to the reduction of the progression of disease in late-onset groups which shows that this mutation may lead to the protective effect on the PD subjects. This study suggests the use of KYNA and 3-HK as potential biomarkers in analysing the progression of disease. This study is limited by its small sample size. To overcome this limitation, a larger study involving in greater number of participants is needed to thoroughly investigate the KMO gene and KP metabolites, to enhance our understanding of Parkinson's disease progression, and to enhance diagnostic capabilities.

3.
Am J Med Genet A ; 191(10): 2524-2535, 2023 10.
Article in English | MEDLINE | ID: mdl-37317958

ABSTRACT

X-linked retinoschisis (XLR) is a rare medical condition that involves in the splitting of neurosensory layers and the impairment of vision in the retina. In majority of the XLR cases, pathogenic variants in Retinoschisin 1 (RS1) gene have been implicated in males with an early age of onset during early childhood. In the present study, we have recruited two North Indian families having multiple affected male members, who were diagnosed with XLR. The entire protein-coding region of RS1 was screened by PCR-Sanger sequencing and two recurrent pathogenic variants (p.I81N and p.R102Q) were unraveled. The in vitro study of these variants demonstrated the aggregation of mutant RS1 within the endoplasmic reticulum. Furthermore, mutant forms of this protein showed significant intracellular retention, which was evident by the absence of retinoschisin protein fractions in the extracellular media. These inferences were also supported by extensive bioinformatics analysis of the mutants, which showed dramatic conformational changes in the local structure of retinoschisin. Thus, our study suggests that the identified pathogenic variants interfere with proper protein folding, leading to anomalous structural changes ultimately resulting in intracellular retention of retinoschisin within the retina.


Subject(s)
Retinoschisis , Child, Preschool , Male , Humans , Retinoschisis/diagnosis , Retinoschisis/genetics , Retinoschisis/metabolism , Mutation, Missense/genetics , Retina/pathology , Protein Folding , India , Eye Proteins/genetics
4.
Mol Neurobiol ; 59(9): 5673-5694, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35768750

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Genetic Association Studies , Genome-Wide Association Study , Heat-Shock Proteins/genetics , Humans , Kinesins , Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , Molecular Chaperones , Multifactorial Inheritance , Mutation
5.
Ann Hum Genet ; 86(5): 245-256, 2022 09.
Article in English | MEDLINE | ID: mdl-35451063

ABSTRACT

Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in CENPJ (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of CENPJ in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known CENPJ function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of CENPJ-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.


Subject(s)
Dwarfism , Microcephaly , Centromere/pathology , Dwarfism/genetics , Humans , Male , Microcephaly/genetics , Microcephaly/pathology , Microtubule-Associated Proteins/genetics , Mutation , Pedigree , RNA Splice Sites , RNA Splicing
8.
Parkinsonism Relat Disord ; 31: 124-128, 2016 10.
Article in English | MEDLINE | ID: mdl-27496670

ABSTRACT

BACKGROUND: A novel homozygous missense mutation (c.773G > A, p.Arg258Gln) in Synaptojanin 1 (SYNJ1, 21q22.2) has recently been reported in two Italian and one Iranian consanguineous families with autosomal recessive juvenile Parkinsonism (ARJP). Contribution of this synaptic gene related to Parkinsonism phenotypes in other populations still remains unidentified. METHODS: An ARJP family with two affected siblings characterized by frequent tremor with bradykinesia and rigidity was recruited in this study. Both siblings showed intense dyskinesia and dystonia on administration of Syndopa. The family was analyzed for both mutations and exon dosage variations in PARKIN, PINK1 and DJ1. Further, whole exome sequencing was performed in two affected and one unaffected sibling in the family. RESULTS: We identified a novel homozygous mutation (c.1376C > G, p.Arg459Pro) in SYNJ1 segregating in this family. This p.Arg459Pro mutation was not observed in 285 additional Parkinson disease (PD) samples (32 familial, 81 early onset and 172 late onset) screened by PCR-Sanger-sequencing. It was also absent in dbSNP, 1000 Genomes, ExAC, NHLBI-ESP database and in >250 ethnically matched exomes available in our laboratory. The arginine residue is highly conserved across species and predicted to be damaging by several in silico tools. As with the previous mutation p.Arg258Gln, p.Arg459Pro is also present in Sac 1 domain of SYNJ1 wherein p.Arg258Gln mutation has already been described to impair the phosphatase activity. CONCLUSIONS: We report another novel mutation in SYNJ1 of an Indian consanguineous ARJP family. Finding an additional mutation in this gene further supports the involvement of SYNJ1 in PD pathogenesis across different ethnicities.


Subject(s)
Arginine/genetics , Genes, Recessive/genetics , Mutation/genetics , Parkinsonian Disorders/genetics , Phosphoric Monoester Hydrolases/genetics , Proline/genetics , Adult , DNA Mutational Analysis , Family Health , Female , Humans , India , Magnetic Resonance Imaging , Male , Parkinsonian Disorders/diagnostic imaging , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...