Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cancer Res ; 82(1): 130-141, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34548332

ABSTRACT

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for EGFR-mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in EGFR-mutant NSCLC. Although EGFR TKI resistance mechanisms do not lead to alterations in HER3, we hypothesized that targeting HER3 might improve efficacy of EGFR TKI. HER3-DXd is an antibody-drug conjugate (ADC) comprised of HER3-targeting antibody linked to a topoisomerase I inhibitor currently in clinical development. In this study, we evaluated the efficacy of HER3-DXd across a series of EGFR inhibitor-resistant, patient-derived xenografts and observed it to be broadly effective in HER3-expressing cancers. We further developed a preclinical strategy to enhance the efficacy of HER3-DXd through osimertinib pretreatment, which increased membrane expression of HER3 and led to enhanced internalization and efficacy of HER3-DXd. The combination of osimertinib and HER3-DXd may be an effective treatment approach and should be evaluated in future clinical trials in EGFR-mutant NSCLC patients. SIGNIFICANCE: EGFR inhibition leads to increased HER3 membrane expression and promotes HER3-DXd ADC internalization and efficacy, supporting the clinical development of the EGFR inhibitor/HER3-DXd combination in EGFR-mutant lung cancer.See related commentary by Lim et al., p. 18.


Subject(s)
Antineoplastic Agents/therapeutic use , ErbB Receptors/antagonists & inhibitors , Immunoconjugates/metabolism , Receptor, ErbB-3/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Culture Techniques , Cell Line, Tumor , Humans , Mice
2.
Mol Cancer Ther ; 21(2): 322-335, 2022 02.
Article in English | MEDLINE | ID: mdl-34789563

ABSTRACT

MET-targeted therapies are clinically effective in MET-amplified and MET exon 14 deletion mutant (METex14) non-small cell lung cancers (NSCLCs), but their efficacy is limited by the development of drug resistance. Structurally distinct MET tyrosine kinase inhibitors (TKIs) (type I/II) have been developed or are under clinical evaluation, which may overcome MET-mediated drug resistance mechanisms. In this study, we assess secondary MET mutations likely to emerge in response to treatment with single-agent or combinations of type I/type II MET TKIs using TPR-MET transformed Ba/F3 cell mutagenesis assays. We found that these inhibitors gave rise to distinct secondary MET mutant profiles. However, a combination of type I/II TKI inhibitors (capmatinib and merestinib) yielded no resistant clones in vitro The combination of capmatinib/merestinib was evaluated in vivo and led to a significant reduction in tumor outgrowth compared with either MET inhibitor alone. Our findings demonstrate in vitro and in vivo that a simultaneous treatment with a type I and type II MET TKI may be a clinically viable approach to delay and/or diminish the emergence of on target MET-mediated drug-resistance mutations.


Subject(s)
Drug Resistance, Neoplasm/drug effects , High-Throughput Nucleotide Sequencing/methods , Molecular Docking Simulation/methods , Protein Kinase Inhibitors/therapeutic use , Animals , Female , Humans , Mice , Protein Kinase Inhibitors/pharmacology
3.
J Clin Invest ; 131(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33151910

ABSTRACT

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Subject(s)
Immunotherapy , Neoplasm Proteins , Neoplasms, Experimental , Programmed Cell Death 1 Receptor , RNA-Seq , Single-Cell Analysis , Spheroids, Cellular , Animals , Cell Line, Tumor , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Spheroids, Cellular/immunology , Spheroids, Cellular/pathology
4.
Mol Oncol ; 15(1): 27-42, 2021 01.
Article in English | MEDLINE | ID: mdl-32191822

ABSTRACT

Small-cell lung cancer (SCLC) occurs infrequently in never/former light smokers. We sought to study this rare clinical subset through next-generation sequencing (NGS) and by characterizing a representative patient-derived model. We performed targeted NGS, as well as comprehensive pathological evaluation, in 11 never/former light smokers with clinically diagnosed SCLC. We established a patient-derived model from one such patient (DFCI168) harboring an NRASQ61K mutation and characterized the sensitivity of this model to MEK and TORC1/2 inhibitors. Despite the clinical diagnosis of SCLC, the majority (8/11) of cases were either of nonpulmonary origin or of mixed histology and included atypical carcinoid (n = 1), mixed non-small-cell lung carcinoma and SCLC (n = 4), unspecified poorly differentiated carcinoma (n = 1), or small-cell carcinoma from different origins (n = 2). RB1 and TP53 mutations were found in four and five cases, respectively. Predicted driver mutations were detected in EGFR (n = 2), NRAS (n = 1), KRAS (n = 1), BRCA1 (n = 1), and ATM (n = 1), and one case harbored a TMPRSS2-ERG fusion. DFCI168 (NRASQ61K ) exhibited marked sensitivity to MEK inhibitors in vitro and in vivo. The combination of MEK and mTORC1/2 inhibitors synergized to prevent compensatory mTOR activation, resulting in prolonged growth inhibition in this model and in three other NRAS mutant lung cancer cell lines. SCLC in never/former light smokers is rare and is potentially a distinct disease entity comprised of oncogenic driver mutation-harboring carcinomas morphologically and/or clinically mimicking SCLC. Comprehensive pathologic review integrated with genomic profiling is critical in refining the diagnosis and in identifying potential therapeutic options.


Subject(s)
Genetic Heterogeneity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Targeted Therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Smokers , Aged , Animals , Base Sequence , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Female , GTP Phosphohydrolases/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Membrane Proteins/genetics , Mice , Middle Aged , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Mutation/genetics , Neurosecretory Systems/drug effects , Neurosecretory Systems/pathology , Phenotype , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/drug therapy
5.
Clin Cancer Res ; 27(1): 276-287, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33239433

ABSTRACT

PURPOSE: Dexamethasone, a uniquely potent corticosteroid, is frequently administered to patients with brain tumors to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in patients with glioblastoma (GBM), particularly in the context of immunotherapy. EXPERIMENTAL DESIGN: We evaluated the dose-dependent effects of dexamethasone when administered with programmed cell death 1 (PD-1) blockade and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 and CT-2A GBM tumors. Clinically, the effect of dexamethasone on survival was evaluated in 181 patients with isocitrate dehydrogenase (IDH) wild-type GBM treated with PD-(L)1 blockade, with adjustment for relevant prognostic factors. RESULTS: Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy reduced survival in a dose-dependent manner. Concurrent dexamethasone also abrogated survival following anti-PD-1 therapy with or without radiotherapy in immune-resistant CT-2A models. Dexamethasone decreased T-lymphocyte numbers by increasing apoptosis, in addition to decreasing lymphocyte functional capacity. Myeloid and natural killer cell populations were also generally reduced by dexamethasone. Thus, dexamethasone appears to negatively affect both adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive patients with IDH wild-type GBM treated with PD-(L)1 blockade revealed poorer survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone administration was the strongest predictor of poor survival [reference, no dexamethasone; <2 mg HR, 2.16; 95% confidence interval (CI), 1.30-3.68; P = 0.003 and ≥2 mg HR, 1.97; 95% CI, 1.23-3.16; P = 0.005]. CONCLUSIONS: Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for patients with GBM.


Subject(s)
Brain Edema/drug therapy , Brain Neoplasms/therapy , Dexamethasone/pharmacology , Glioblastoma/therapy , Immune Checkpoint Inhibitors/pharmacology , Animals , B7-H1 Antigen/antagonists & inhibitors , Brain Edema/etiology , Brain Neoplasms/complications , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Cell Line, Tumor/transplantation , Chemoradiotherapy/methods , Dexamethasone/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Interactions , Female , Follow-Up Studies , Glioblastoma/complications , Glioblastoma/genetics , Glioblastoma/mortality , Humans , Immune Checkpoint Inhibitors/therapeutic use , Isocitrate Dehydrogenase/genetics , Kaplan-Meier Estimate , Mice , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Retrospective Studies , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
6.
Cancer Cell ; 37(1): 104-122.e12, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31935369

ABSTRACT

Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cellular Senescence , ErbB Receptors/metabolism , Female , Gene Deletion , Humans , Lung Neoplasms/pathology , MAP Kinase Kinase 1/metabolism , Male , Mice , Mice, Knockout , Mutation , Signal Transduction , Transcription, Genetic , YAP-Signaling Proteins
7.
Clin Cancer Res ; 25(20): 6127-6140, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31409614

ABSTRACT

PURPOSE: PARP inhibitors are approved for the treatment of high-grade serous ovarian cancers (HGSOC). Therapeutic resistance, resulting from restoration of homologous recombination (HR) repair or replication fork stabilization, is a pressing clinical problem. We assessed the activity of prexasertib, a checkpoint kinase 1 (CHK1) inhibitor known to cause replication catastrophe, as monotherapy and in combination with the PARP inhibitor olaparib in preclinical models of HGSOC, including those with acquired PARP inhibitor resistance. EXPERIMENTAL DESIGN: Prexasertib was tested as a single agent or in combination with olaparib in 14 clinically annotated and molecularly characterized luciferized HGSOC patient-derived xenograft (PDX) models and in a panel of ovarian cancer cell lines. The ability of prexasertib to impair HR repair and replication fork stability was also assessed. RESULTS: Prexasertib monotherapy demonstrated antitumor activity across the 14 PDX models. Thirteen models were resistant to olaparib monotherapy, including 4 carrying BRCA1 mutation. The combination of olaparib with prexasertib was synergistic and produced significant tumor growth inhibition in an olaparib-resistant model and further augmented the degree and durability of response in the olaparib-sensitive model. HGSOC cell lines, including those with acquired PARP inhibitor resistance, were also sensitive to prexasertib, associated with induction of DNA damage and replication stress. Prexasertib also sensitized these cell lines to PARP inhibition and compromised both HR repair and replication fork stability. CONCLUSIONS: Prexasertib exhibits monotherapy activity in PARP inhibitor-resistant HGSOC PDX and cell line models, reverses restored HR and replication fork stability, and synergizes with PARP inhibition.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Cystadenocarcinoma, Serous/drug therapy , Ovarian Neoplasms/drug therapy , Pyrazines/pharmacology , Pyrazoles/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/genetics , Cell Line, Tumor , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Humans , Neoplasm Grading , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazines/therapeutic use , Pyrazoles/therapeutic use , Recombinational DNA Repair/drug effects , Xenograft Model Antitumor Assays
8.
Cancer Immunol Res ; 7(9): 1457-1471, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31331945

ABSTRACT

The success of targeted or immune therapies is often hampered by the emergence of resistance and/or clinical benefit in only a subset of patients. We hypothesized that combining targeted therapy with immune modulation would show enhanced antitumor responses. Here, we explored the combination potential of erdafitinib, a fibroblast growth factor receptor (FGFR) inhibitor under clinical development, with PD-1 blockade in an autochthonous FGFR2K660N/p53mut lung cancer mouse model. Erdafitinib monotherapy treatment resulted in substantial tumor control but no significant survival benefit. Although anti-PD-1 alone was ineffective, the erdafitinib and anti-PD-1 combination induced significant tumor regression and improved survival. For both erdafitinib monotherapy and combination treatments, tumor control was accompanied by tumor-intrinsic, FGFR pathway inhibition, increased T-cell infiltration, decreased regulatory T cells, and downregulation of PD-L1 expression on tumor cells. These effects were not observed in a KRASG12C-mutant genetically engineered mouse model, which is insensitive to FGFR inhibition, indicating that the immune changes mediated by erdafitinib may be initiated as a consequence of tumor cell killing. A decreased fraction of tumor-associated macrophages also occurred but only in combination-treated tumors. Treatment with erdafitinib decreased T-cell receptor (TCR) clonality, reflecting a broadening of the TCR repertoire induced by tumor cell death, whereas combination with anti-PD-1 led to increased TCR clonality, suggesting a more focused antitumor T-cell response. Our results showed that the combination of erdafitinib and anti-PD-1 drives expansion of T-cell clones and immunologic changes in the tumor microenvironment to support enhanced antitumor immunity and survival.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Immunity/drug effects , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Biomarkers , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Humans , Immunophenotyping , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Transgenic , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Programmed Cell Death 1 Receptor/genetics , Pyrazoles/pharmacology , Quinoxalines/pharmacology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/drug effects , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Treatment Outcome , Tumor Microenvironment
9.
Lancet Oncol ; 20(4): 570-580, 2019 04.
Article in English | MEDLINE | ID: mdl-30880072

ABSTRACT

BACKGROUND: Based on preclinical work, we found that combination of poly (ADP-ribose) polymerase (PARP) inhibitors with drugs that inhibit the homologous recombination repair (HRR) pathway (such as PI3K inhibitors) might sensitise HRR-proficient epithelial ovarian cancers to PARP inhibitors. We aimed to assess the safety and identify the recommended phase 2 dose of the PARP inhibitor olaparib in combination with the PI3K inhibitor alpelisib in patients with epithelial ovarian cancer and in patients with breast cancer. METHODS: In this multicentre, open-label, phase 1b trial following a 3 + 3 dose-escalation design, we recruited patients aged 18 years or older with the following key eligibility criteria: confirmed diagnosis of either recurrent ovarian, fallopian tube, or primary peritoneal cancer of high-grade serous histology; confirmed diagnosis of either recurrent ovarian, fallopian tube, or primary peritoneal cancer of any histology with known germline BRCA mutations; confirmed diagnosis of recurrent breast cancer of triple-negative histology; or confirmed diagnosis of recurrent breast cancer of any histology with known germline BRCA mutations. Additional patients with epithelial ovarian cancer were enrolled in a dose-expansion cohort. Four dose levels were planned: the starting dose level of alpelisib 250 mg once a day plus olaparib 100 mg twice a day (dose level 0); alpelisib 250 mg once a day plus olaparib 200 mg twice a day (dose level 1); alpelisib 300 mg once a day plus olaparib 200 mg twice a day (dose level 2); and alpelisib 200 mg once a day plus olaparib 200 mg twice a day (dose level 3). Both drugs were administered orally, in tablet formulation. The primary objective was to identify the maximum tolerated dose and the recommended phase 2 dose of the combination of alpelisib and olaparib for patients with epithelial ovarian cancer and patients with breast cancer. Analyses included all patients who received at least one dose of the study drugs. The trial is active, but closed to enrolment; follow-up for patients who completed treatment is ongoing. This trial is registered with ClinicalTrials.gov, number NCT01623349. FINDINGS: Between Oct 3, 2014, and Dec 21, 2016, we enrolled 34 patients (28 in the dose-escalation cohort and six in the dose-expansion cohort); two in the dose-escalation cohort were ineligible at the day of scheduled study initiation. Maximum tolerated dose and recommended phase 2 dose were identified as alpelisib 200 mg once a day plus olaparib 200 mg twice a day (dose level 3). Considering all dose levels, the most common treatment-related grade 3-4 adverse events were hyperglycaemia (five [16%] of 32 patients), nausea (three [9%]), and increased alanine aminotransferase concentrations (three [9%]). No treatment-related deaths occurred. Dose-limiting toxic effects included hyperglycaemia and fever with decreased neutrophil count. Of the 28 patients with epithelial ovarian cancer, ten (36%) achieved a partial response and 14 (50%) had stable disease according to Response Evaluation Criteria in Solid Tumors 1.1. INTERPRETATION: Combining alpelisib and olaparib is feasible with no unexpected toxic effects. The observed activity provides preliminary clinical evidence of synergism between olaparib and alpelisib, particularly in epithelial ovarian cancer, and warrants further investigation. FUNDING: Ovarian Cancer Dream Team (Stand Up To Cancer, Ovarian Cancer Research Alliance, National Ovarian Cancer Coalition), Breast Cancer Research Foundation, Novartis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Ovarian Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Thiazoles/therapeutic use , Aged , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions , Female , Genome, Human/genetics , Humans , Maximum Tolerated Dose , Middle Aged , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Treatment Outcome
10.
J Immunother Cancer ; 7(1): 32, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728077

ABSTRACT

BACKGROUND: Tumor orchestrated metabolic changes in the microenvironment limit generation of anti-tumor immune responses. Availability of arginine, a semi-essential amino acid, is critical for lymphocyte proliferation and function. Levels of arginine are regulated by the enzymes arginase 1,2 and nitric oxide synthase (NOS). However, the role of arginase activity in lung tumor maintenance has not been investigated in clinically relevant orthotopic tumor models. METHODS: RNA sequencing (RNA-seq) of sorted cell populations from mouse lung adenocarcinomas derived from immunocompetent genetically engineered mouse models (GEMM)s was performed. To complement mouse studies, a patient tissue microarray consisting of 150 lung adenocarcinomas, 103 squamous tumors, and 54 matched normal tissue were stained for arginase, CD3, and CD66b by multiplex immunohistochemistry. Efficacy of a novel arginase inhibitor compound 9 in reversing arginase mediated T cell suppression was determined in splenocyte ex vivo assays. Additionally, the anti-tumor activity of this compound was determined in vitro and in an autochthonous immunocompetent KrasG12D GEMM of lung adenocarcinoma model. RESULTS: Analysis of RNA-seq of sorted myeloid cells suggested that arginase expression is elevated in myeloid cells in the tumor as compared to the normal lung tissue. Accordingly, in the patient samples arginase 1 expression was mainly localized in the granulocytic myeloid cells and significantly elevated in both lung adenocarcinoma and squamous tumors as compared to the controls. Our ex vivo analysis demonstrated that myeloid derived suppressor cell (MDSC)s cause T cell suppression by arginine depletion, and suppression of arginase activity by a novel ARG1/2 inhibitor, compound 9, led to restoration of T cell function by increasing arginine. Treatment of KrasG12D GEMM of lung cancer model with compound 9 led to a significant tumor regression associated with increased T cell numbers and function, while it had no activity across several murine and human non-small cell (NSCLC) lung cancer lines in vitro. CONCLUSIONS: We show that arginase expression is elevated in mouse and patient lung tumors. In a KRASG12D GEMM arginase inhibition diminished growth of established tumors. Our data suggest arginase as an immunomodulatory target that should further be investigated in lung tumors with high arginase activity.


Subject(s)
Arginase/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/enzymology , Lung Neoplasms/enzymology , Myeloid Cells/enzymology , Adult , Aged , Aged, 80 and over , Animals , Arginase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Disease Models, Animal , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Mice , Middle Aged , RNA-Seq
11.
Cancer Discov ; 9(1): 34-45, 2019 01.
Article in English | MEDLINE | ID: mdl-30297358

ABSTRACT

KRAS-driven lung cancers frequently inactivate TP53 and/or STK11/LKB1, defining tumor subclasses with emerging clinical relevance. Specifically, KRAS-LKB1 (KL)-mutant lung cancers are particularly aggressive, lack PD-L1, and respond poorly to immune checkpoint blockade (ICB). The mechanistic basis for this impaired immunogenicity, despite the overall high mutational load of KRAS-mutant lung cancers, remains obscure. Here, we report that LKB1 loss results in marked silencing of stimulator of interferon genes (STING) expression and insensitivity to cytoplasmic double-strand DNA (dsDNA) sensing. This effect is mediated at least in part by hyperactivation of DNMT1 and EZH2 activity related to elevated S-adenylmethionine levels and reinforced by DNMT1 upregulation. Ectopic expression of STING in KL cells engages IRF3 and STAT1 signaling downstream of TBK1 and impairs cellular fitness, due to the pathologic accumulation of cytoplasmic mitochondrial dsDNA associated with mitochondrial dysfunction. Thus, silencing of STING avoids these negative consequences of LKB1 inactivation, while facilitating immune escape. SIGNIFICANCE: Oncogenic KRAS-mutant lung cancers remain treatment-refractory and are resistant to ICB in the setting of LKB1 loss. These results begin to uncover the key underlying mechanism and identify strategies to restore STING expression, with important therapeutic implications because mitochondrial dysfunction is an obligate component of this tumor subtype.See related commentary by Corte and Byers, p. 16.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Adenocarcinoma/genetics , Gene Deletion , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , AMP-Activated Protein Kinase Kinases , Adenocarcinoma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Interferon Regulatory Factor-3/metabolism , Lung Neoplasms/metabolism , Membrane Proteins/genetics , Mutation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , STAT1 Transcription Factor/metabolism
12.
Elife ; 72018 11 13.
Article in English | MEDLINE | ID: mdl-30422115

ABSTRACT

High-grade serous ovarian cancer is characterized by extensive copy number alterations, among which the amplification of MYC oncogene occurs in nearly half of tumors. We demonstrate that ovarian cancer cells highly depend on MYC for maintaining their oncogenic growth, indicating MYC as a therapeutic target for this difficult-to-treat malignancy. However, targeting MYC directly has proven difficult. We screen small molecules targeting transcriptional and epigenetic regulation, and find that THZ1 - a chemical inhibiting CDK7, CDK12, and CDK13 - markedly downregulates MYC. Notably, abolishing MYC expression cannot be achieved by targeting CDK7 alone, but requires the combined inhibition of CDK7, CDK12, and CDK13. In 11 patient-derived xenografts models derived from heavily pre-treated ovarian cancer patients, administration of THZ1 induces significant tumor growth inhibition with concurrent abrogation of MYC expression. Our study indicates that targeting these transcriptional CDKs with agents such as THZ1 may be an effective approach for MYC-dependent ovarian malignancies.


Subject(s)
Antineoplastic Agents/metabolism , CDC2 Protein Kinase/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Ovarian Neoplasms/pathology , Phenylenediamines/metabolism , Proto-Oncogene Proteins c-myc/biosynthesis , Pyrimidines/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Disease Models, Animal , Down-Regulation , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Female , Heterografts , Humans , Mice, SCID , Neoplasm Transplantation , Ovarian Neoplasms/drug therapy , Phenylenediamines/administration & dosage , Pyrimidines/administration & dosage , Treatment Outcome , Cyclin-Dependent Kinase-Activating Kinase
13.
Cancer Immunol Res ; 6(12): 1511-1523, 2018 12.
Article in English | MEDLINE | ID: mdl-30242021

ABSTRACT

We developed a screening assay in which luciferized ID8 expressing OVA was cocultured with transgenic CD8+ T cells specifically recognizing the model antigen in an H-2b-restricted manner. The assay was screened with a small-molecule library to identify compounds that inhibit or enhance T cell-mediated killing of tumor cells. Erlotinib, an EGFR inhibitor, was the top compound that enhanced T-cell killing of tumor cells. Subsequent experiments with erlotinib and additional EGFR inhibitors validated the screen results. EGFR inhibitors increased both basal and IFNγ-induced MHC class-I presentation, which enhanced recognition and lysis of tumor cell targets by CD8+ cytotoxic T lymphocytes. The ID8 cell line was also transduced to constitutively express Cas9, and a pooled CRISPR screen, utilizing the same target tumor cell/T-cell assay, identified single-guide (sg)RNAs targeting EGFR that sensitized tumor cells to T cell-mediated killing. Combination of PD-1 blockade with EGFR inhibition showed significant synergistic efficacy in a syngeneic model, further validating EGFR inhibitors as immunomodulatory agents that enhance checkpoint blockade. This assay can be screened in high-throughput with small-molecule libraries and genome-wide CRISPR/Cas9 libraries to identify both compounds and target genes, respectively, that enhance or inhibit T-cell recognition and killing of tumor cells. Retrospective analyses of squamous-cell head and neck cancer (SCCHN) patients treated with the combination of afatinib and pembrolizumab demonstrated a rate of clinical activity exceeding that of each single agent. Prospective clinical trials evaluating the combination of an EGFR inhibitor and PD-1 blockade should be conducted.


Subject(s)
Drug Screening Assays, Antitumor/methods , ErbB Receptors/antagonists & inhibitors , High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , Afatinib/administration & dosage , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD8-Positive T-Lymphocytes , CRISPR-Cas Systems , Cell Line, Tumor , Coculture Techniques , Head and Neck Neoplasms/drug therapy , Humans , Luciferases, Firefly/genetics , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/drug therapy , T-Lymphocytes, Cytotoxic/immunology
14.
Cancer Cell ; 34(3): 439-452.e6, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30205046

ABSTRACT

Despite extensive efforts, oncogenic KRAS remains resistant to targeted therapy. Combined downstream RAL-TBK1 and MEK inhibition induces only transient lung tumor shrinkage in KRAS-driven genetically engineered mouse models (GEMMs). Using the sensitive KRAS;LKB1 (KL) mutant background, we identify YAP1 upregulation and a therapy-induced secretome as mediators of acquired resistance. This program is reversible, associated with H3K27 promoter acetylation, and suppressed by BET inhibition, resensitizing resistant KL cells to TBK1/MEK inhibition. Constitutive YAP1 signaling promotes intrinsic resistance in KRAS;TP53 (KP) mutant lung cancer. Intermittent treatment with the BET inhibitor JQ1 thus overcomes resistance to combined pathway inhibition in KL and KP GEMMs. Using potent and selective TBK1 and BET inhibitors we further develop an effective therapeutic strategy with potential translatability to the clinic.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , HEK293 Cells , Humans , Immunity, Innate/drug effects , Insulin-Like Growth Factor I/immunology , Insulin-Like Growth Factor I/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphoproteins/immunology , Phosphoproteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors , YAP-Signaling Proteins
15.
Clin Cancer Res ; 24(23): 5963-5976, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30072474

ABSTRACT

PURPOSE: MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN: The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS: KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS: Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Exons , Gene Amplification , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Crizotinib/pharmacology , DNA Copy Number Variations , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Mice , Models, Biological , Phosphatidylinositol 3-Kinases/genetics , Positron Emission Tomography Computed Tomography , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
16.
NPJ Breast Cancer ; 4: 22, 2018.
Article in English | MEDLINE | ID: mdl-30083595

ABSTRACT

ESR1 mutations were recently found to be an important mechanism of endocrine resistance in ER-positive (ER + ) metastatic breast cancer. To determine the clinicopathological features driving the emergence of the ESR1 mutations we studied plasma cfDNA and detailed clinical data collected from patients with metastatic breast cancer. Droplet Digital PCR was performed for the detection of the most common ESR1 mutations and PIK3CA mutations. Among the patients with ER + /HER2- disease, ESR1 mutations were detected in 30% of the patients. There were no associations between the pathological features of the primary disease or time to distant recurrence and the emergence of ESR1 mutations in metastatic disease. The prevalence of the ESR1 mutations was significantly associated with prior treatment with an aromatase inhibitor in the adjuvant or metastatic setting. The prevalence of the ESR1 mutations was also positively associated with prior fulvestrant treatment. Conversely, the prevalence of ESR1 mutations was lower after treatment with a CDK4/6 inhibitor. There were no significant associations between specific systemic treatments and the prevalence of PIK3CA mutations. These results support the evolution of the ESR1 mutations under the selective pressure of treatment with aromatase inhibitors in the adjuvant and metastatic settings and have important implications in the optimization of adjuvant and metastatic treatment in ER + breast cancer.

17.
ACS Med Chem Lett ; 9(7): 761-767, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034615

ABSTRACT

The emergence and evolution of new immunological cancer therapies has sparked a rapidly growing interest in discovering novel pathways to treat cancer. Toward this aim, a novel series of pyrrolidine derivatives (compound 5) were identified as potent inhibitors of ERK1/2 with excellent kinase selectivity and dual mechanism of action but suffered from poor pharmacokinetics (PK). The challenge of PK was overcome by the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 7. Lead optimization through focused structure-activity relationship led to the discovery of a clinical candidate MK-8353 suitable for twice daily oral dosing as a potential new cancer therapeutic.

18.
Bioorg Med Chem Lett ; 28(11): 2029-2034, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29748051

ABSTRACT

Compound 5 (SCH772984) was identified as a potent inhibitor of ERK1/2 with excellent selectivity against a panel of kinases (0/231 kinases tested @ 100 nM) and good cell proliferation activity, but suffered from poor PK (rat AUC PK @10 mpk = 0 µM h; F% = 0) which precluded further development. In an effort to identify novel ERK inhibitors with improved PK properties with respect to 5, a systematic exploration of sterics and composition at the 3-position of the pyrrolidine led to the discovery of a novel 3(S)-thiomethyl pyrrolidine analog 28 with vastly improved PK (rat AUC PK @10 mpk = 26 µM h; F% = 70).


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrrolidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
19.
JCI Insight ; 3(4)2018 02 22.
Article in English | MEDLINE | ID: mdl-29467321

ABSTRACT

BACKGROUND: Constitutive activation of ERK1/2 occurs in various cancers, and its reactivation is a well-described resistance mechanism to MAPK inhibitors. ERK inhibitors may overcome the limitations of MAPK inhibitor blockade. The dual mechanism inhibitor SCH772984 has shown promising preclinical activity across various BRAFV600/RAS-mutant cancer cell lines and human cancer xenografts. METHODS: We have developed an orally bioavailable ERK inhibitor, MK-8353; conducted preclinical studies to demonstrate activity, pharmacodynamic endpoints, dosing, and schedule; completed a study in healthy volunteers (P07652); and subsequently performed a phase I clinical trial in patients with advanced solid tumors (MK-8353-001). In the P07652 study, MK-8353 was administered as a single dose in 10- to 400-mg dose cohorts, whereas in the MK-8353-001 study, MK-8353 was administered in 100- to 800-mg dose cohorts orally twice daily. Safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity were analyzed. RESULTS: MK-8353 exhibited comparable potency with SCH772984 across various preclinical cancer models. Forty-eight patients were enrolled in the P07652 study, and twenty-six patients were enrolled in the MK-8353-001 study. Adverse events included diarrhea (44%), fatigue (40%), nausea (32%), and rash (28%). Dose-limiting toxicity was observed in the 400-mg and 800-mg dose cohorts. Sufficient exposure to MK-8353 was noted that correlated with biological activity in preclinical data. Three of fifteen patients evaluable for treatment response in the MK-8353-001 study had partial response, all with BRAFV600-mutant melanomas. CONCLUSION: MK-8353 was well tolerated up to 400 mg twice daily and exhibited antitumor activity in patients with BRAFV600-mutant melanoma. However, antitumor activity was not particularly correlated with pharmacodynamic parameters. TRIAL REGISTRATION: ClinicalTrials.gov NCT01358331. FUNDING: Merck Sharp & Dohme Corp., a subsidiary of Merck & Co. Inc., and NIH (P01 CA168585 and R35 CA197633).


Subject(s)
Indazoles/pharmacology , MAP Kinase Signaling System/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Triazoles/pharmacology , Administration, Oral , Adult , Animals , Biological Availability , Cell Line, Tumor , Diarrhea/chemically induced , Diarrhea/epidemiology , Dogs , Dose-Response Relationship, Drug , Drug Eruptions/epidemiology , Drug Eruptions/etiology , Drug Evaluation, Preclinical , Fatigue/chemically induced , Fatigue/epidemiology , Female , Humans , Indazoles/therapeutic use , Male , Maximum Tolerated Dose , Mice , Middle Aged , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Nausea/chemically induced , Nausea/epidemiology , Neoplasm Staging , Neoplasms/genetics , Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Pyrrolidines/therapeutic use , Rats , Triazoles/therapeutic use , Xenograft Model Antitumor Assays , Young Adult
20.
J Clin Invest ; 127(12): 4554-4568, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29130934

ABSTRACT

Transcriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene. UBB is repressed in approximately 30% of high-grade serous ovarian cancer (HGSOC) patients and is a recurrent lesion in uterine carcinosarcoma and endometrial carcinoma. We identified ovarian tumor cell lines that retain UBB in a repressed state, used these cell lines to establish orthotopic ovarian tumors, and found that inducible expression of a UBC-targeting shRNA led to tumor regression, and substantial long-term survival benefit. Thus, we describe a recurrent cancer-specific lesion at the level of ubiquitin production. Moreover, these observations reveal the prognostic value of UBB repression and establish UBC as a promising therapeutic target for ovarian cancer patients with recurrent UBB silencing.


Subject(s)
Gene Silencing , Neoplasm Proteins/biosynthesis , Ovarian Neoplasms/metabolism , Ubiquitin C/biosynthesis , Ubiquitin/biosynthesis , Cell Line, Tumor , Female , Humans , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Ubiquitin/genetics , Ubiquitin C/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...