Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38358352

ABSTRACT

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Subject(s)
Colorectal Neoplasms , Neutrophils , Animals , Mice , Humans , Neoplasm Recurrence, Local/metabolism , Signal Transduction/genetics , Colorectal Neoplasms/genetics , Single-Cell Analysis
2.
Nat Commun ; 15(1): 1090, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316788

ABSTRACT

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Animals , Mice , Humans , Bone Marrow/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid/pathology , Philadelphia Chromosome , Macrophages/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Tumor Microenvironment/genetics
3.
Nat Metab ; 5(8): 1303-1318, 2023 08.
Article in English | MEDLINE | ID: mdl-37580540

ABSTRACT

The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.


Subject(s)
Colorectal Neoplasms , Animals , Humans , Mice , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Metabolomics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
4.
Hemasphere ; 7(6): e895, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37304939

ABSTRACT

Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.

5.
PLoS One ; 18(5): e0286412, 2023.
Article in English | MEDLINE | ID: mdl-37253035

ABSTRACT

Myelofibrosis is a myeloproliferative neoplasm (MPN) which typically results in reduced length and quality of life due to systemic symptoms and blood count changes arising from fibrotic changes in the bone marrow. While the JAK2 inhibitor ruxolitinib provides some clinical benefit, there remains a substantial unmet need for novel targeted therapies to better modify the disease process or eradicate the cells at the heart of myelofibrosis pathology. Repurposing drugs bypasses many of the hurdles present in drug development, such as toxicity and pharmacodynamic profiling. To this end we undertook a re-analysis of our pre-existing proteomic data sets to identify perturbed biochemical pathways and their associated drugs/inhibitors to potentially target the cells driving myelofibrosis. This approach identified CBL0137 as a candidate for targeting Jak2 mutation-driven malignancies. CBL0137 is a drug derived from curaxin targeting the Facilitates Chromatin Transcription (FACT) complex. It is reported to trap the FACT complex on chromatin thereby activating p53 and inhibiting NF-kB activity. We therefore assessed the activity of CBL0137 in primary patient samples and murine models of Jak2-mutated MPN and found it preferentially targets CD34+ stem and progenitor cells from myelofibrosis patients by comparison with healthy control cells. Further we investigate its mechanism of action in primary haemopoietic progenitor cells and demonstrate its ability to reduce splenomegaly and reticulocyte number in a transgenic murine model of myeloproliferative neoplasms.


Subject(s)
Myeloproliferative Disorders , Primary Myelofibrosis , Humans , Mice , Animals , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/genetics , Proteomics , Quality of Life , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Janus Kinase 2/metabolism , Chromatin , Mutation
6.
Sci Transl Med ; 15(698): eabn0736, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37256934

ABSTRACT

Progressive fibrosis is a feature of aging and chronic tissue injury in multiple organs, including the kidney and heart. Glioma-associated oncogene 1 expressing (Gli1+) cells are a major source of activated fibroblasts in multiple organs, but the links between injury, inflammation, and Gli1+ cell expansion and tissue fibrosis remain incompletely understood. We demonstrated that leukocyte-derived tumor necrosis factor (TNF) promoted Gli1+ cell proliferation and cardiorenal fibrosis through induction and release of Indian Hedgehog (IHH) from renal epithelial cells. Using single-cell-resolution transcriptomic analysis, we identified an "inflammatory" proximal tubular epithelial (iPT) population contributing to TNF- and nuclear factor κB (NF-κB)-induced IHH production in vivo. TNF-induced Ubiquitin D (Ubd) expression was observed in human proximal tubular cells in vitro and during murine and human renal disease and aging. Studies using pharmacological and conditional genetic ablation of TNF-induced IHH signaling revealed that IHH activated canonical Hedgehog signaling in Gli1+ cells, which led to their activation, proliferation, and fibrosis within the injured and aging kidney and heart. These changes were inhibited in mice by Ihh deletion in Pax8-expressing cells or by pharmacological blockade of TNF, NF-κB, or Gli1 signaling. Increased amounts of circulating IHH were associated with loss of renal function and higher rates of cardiovascular disease in patients with chronic kidney disease. Thus, IHH connects leukocyte activation to Gli1+ cell expansion and represents a potential target for therapies to inhibit inflammation-induced fibrosis.


Subject(s)
Hedgehog Proteins , Renal Insufficiency, Chronic , Animals , Humans , Mice , Fibrosis , Hedgehog Proteins/metabolism , Inflammation , NF-kappa B , Tumor Necrosis Factors , Zinc Finger Protein GLI1
7.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36480166

ABSTRACT

IL-17A-producing γδ T cells in mice consist primarily of Vγ6+ tissue-resident cells and Vγ4+ circulating cells. How these γδ T cell subsets are regulated during homeostasis and cancer remains poorly understood. Using single-cell RNA sequencing and flow cytommetry, we show that lung Vγ4+ and Vγ6+ cells from tumor-free and tumor-bearing mice express contrasting cell surface molecules as well as distinct co-inhibitory molecules, which function to suppress their expansion. Vγ6+ cells express constitutively high levels of PD-1, whereas Vγ4+ cells upregulate TIM-3 in response to tumor-derived IL-1ß and IL-23. Inhibition of either PD-1 or TIM-3 in mammary tumor-bearing mice increased Vγ6+ and Vγ4+ cell numbers, respectively. We found that genetic deletion of γδ T cells elicits responsiveness to anti-PD-1 and anti-TIM-3 immunotherapy in a mammary tumor model that is refractory to T cell checkpoint inhibitors, indicating that IL-17A-producing γδ T cells instigate resistance to immunotherapy. Together, these data demonstrate how lung IL-17A-producing γδ T cell subsets are differentially controlled by PD-1 and TIM-3 in steady-state and cancer.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Interleukin-17 , Neoplasms , Programmed Cell Death 1 Receptor , T-Lymphocyte Subsets , Animals , Mice , Programmed Cell Death 1 Receptor/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism
8.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509292

ABSTRACT

Progressive fibrosis and maladaptive organ repair result in significant morbidity and millions of premature deaths annually. Senescent cells accumulate with aging and after injury and are implicated in organ fibrosis, but the mechanisms by which senescence influences repair are poorly understood. Using 2 murine models of injury and repair, we show that obstructive injury generated senescent epithelia, which persisted after resolution of the original injury, promoted ongoing fibrosis, and impeded adaptive repair. Depletion of senescent cells with ABT-263 reduced fibrosis in reversed ureteric obstruction and after renal ischemia/reperfusion injury. We validated these findings in humans, showing that senescence and fibrosis persisted after relieved renal obstruction. We next characterized senescent epithelia in murine renal injury using single-cell RNA-Seq. We extended our classification to human kidney and liver disease and identified conserved profibrotic proteins, which we validated in vitro and in human disease. We demonstrated that increased levels of protein disulfide isomerase family A member 3 (PDIA3) augmented TGF-ß-mediated fibroblast activation. Inhibition of PDIA3 in vivo significantly reduced kidney fibrosis during ongoing renal injury and as such represented a new potential therapeutic pathway. Analysis of the signaling pathways of senescent epithelia connected senescence to organ fibrosis, permitting rational design of antifibrotic therapies.


Subject(s)
Cellular Senescence , Kidney , Mice , Humans , Animals , Cellular Senescence/physiology , Fibrosis , Kidney/pathology , Epithelium , Single-Cell Analysis
10.
Nat Med ; 28(7): 1439-1446, 2022 07.
Article in English | MEDLINE | ID: mdl-35788175

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) increases rapidly in prevalence beyond age 60 and has been associated with increased risk for malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Because mutations in HSPCs often drive leukemia, we hypothesized that HSPC fitness substantially contributes to transformation from CHIP to leukemia. HSPC fitness is defined as the proliferative advantage over cells carrying no or only neutral mutations. If mutations in different genes lead to distinct fitness advantages, this could enable patient stratification. We quantified the fitness effects of mutations over 12 years in older age using longitudinal sequencing and developed a filtering method that considers individual mutational context alongside mutation co-occurrence to quantify the growth potential of variants within individuals. We found that gene-specific fitness differences can outweigh inter-individual variation and, therefore, could form the basis for personalized clinical management.


Subject(s)
Hematopoiesis , Leukemia , Clonal Hematopoiesis , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , Humans , Leukemia/pathology , Middle Aged , Mutation/genetics
11.
Blood ; 140(5): 464-477, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35653588

ABSTRACT

Hematopoietic stem cells (HSCs) are of major clinical importance, and finding methods for their in vitro generation is a prime research focus. We show here that the cell cycle inhibitor p57Kip2/Cdkn1c limits the number of emerging HSCs by restricting the size of the sympathetic nervous system (SNS) and the amount of HSC-supportive catecholamines secreted by these cells. This regulation occurs at the SNS progenitor level and is in contrast to the cell-intrinsic function of p57Kip2 in maintaining adult HSCs, highlighting profound differences in cell cycle requirements of adult HSCs compared with their embryonic counterparts. Furthermore, this effect is specific to the aorta-gonad-mesonephros (AGM) region and shows that the AGM is the main contributor to early fetal liver colonization, as early fetal liver HSC numbers are equally affected. Using a range of antagonists in vivo, we show a requirement for intact ß2-adrenergic signaling for SNS-dependent HSC expansion. To gain further molecular insights, we have generated a single-cell RNA-sequencing data set of all Ngfr+ sympathoadrenal cells around the dorsal aorta to dissect their differentiation pathway. Importantly, this not only defined the relevant p57Kip2-expressing SNS progenitor stage but also revealed that some neural crest cells, upon arrival at the aorta, are able to take an alternative differentiation pathway, giving rise to a subset of ventrally restricted mesenchymal cells that express important HSC-supportive factors. Neural crest cells thus appear to contribute to the AGM HSC niche via 2 different mechanisms: SNS-mediated catecholamine secretion and HSC-supportive mesenchymal cell production.


Subject(s)
Hematopoietic Stem Cells , Mesonephros , Aorta , Cell Differentiation , Gonads
12.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
13.
Nat Aging ; 2(1): 31-45, 2022 01.
Article in English | MEDLINE | ID: mdl-37118356

ABSTRACT

Senescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear. In the present study, we show that a small number of lineage-inappropriate genes, exemplified by the LCE2 skin genes, are derepressed during senescence from H3K9me3 regions in fibroblasts. DNA FISH experiments reveal that these gene loci, which are condensed at the nuclear periphery in proliferative cells, are decompacted during senescence. Decompaction of the locus is not sufficient for LCE2 expression, which requires p53 and C/EBPß signaling. NLRP3, which is predominantly expressed in macrophages from an open topologically associated domain (TAD), is also derepressed in senescent fibroblasts due to the local disruption of the H3K9me3-rich TAD that contains it. NLRP3 has been implicated in the amplification of inflammatory cytokine signaling in senescence and aging, highlighting the functional relevance of gene induction from 'permissive' H3K9me3 regions in senescent cells.


Subject(s)
Heterochromatin , Histones , Heterochromatin/genetics , Histones/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Cellular Senescence/genetics , Gene Expression
14.
Nature ; 594(7863): 430-435, 2021 06.
Article in English | MEDLINE | ID: mdl-34079124

ABSTRACT

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Subject(s)
Cell Competition , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Esterases/metabolism , Genes, APC , Mutation , Adenoma/genetics , Adenoma/pathology , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Competition/genetics , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Culture Media, Conditioned , Disease Progression , Esterases/antagonists & inhibitors , Esterases/genetics , Female , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/metabolism , Organoids/pathology , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway
15.
Clin Sci (Lond) ; 135(7): 991-1007, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33861346

ABSTRACT

Ageing is a major risk factor for the development of cardiovascular disease (CVD) and cancer. Whilst the cumulative effect of exposure to conventional cardiovascular risk factors is important, recent evidence highlights clonal haematopoiesis of indeterminant potential (CHIP) as a further key risk factor. CHIP reflects the accumulation of somatic, potentially pro-leukaemic gene mutations within haematopoietic stem cells over time. The most common mutations associated with CHIP and CVD occur in genes that also play central roles in the regulation of inflammation. While CHIP carriers have a low risk of haematological malignant transformation (<1% per year), their relative risk of mortality is increased by 40% and this reflects an excess of cardiovascular events. Evidence linking CHIP, inflammation and atherosclerotic disease has recently become better defined. However, there is a paucity of information about the role of CHIP in the development and progression of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). While systemic inflammation plays a role in the pathophysiology of both heart failure with reduced and preserved ejection fraction (EF), it may be of greater relevance in the pathophysiology of HFpEF, which is also strongly associated with ageing. This review describes CHIP and its pathogenetic links with ageing, inflammation and CVD, while providing insight into its putative role in HFpEF.


Subject(s)
Cardiovascular Diseases , Clonal Hematopoiesis , Heart Failure , Inflammation , Aging , Humans , Risk Factors , Stroke Volume
16.
Leukemia ; 35(5): 1229-1242, 2021 05.
Article in English | MEDLINE | ID: mdl-33833387

ABSTRACT

The quest for treatment-free remission (TFR) and deep molecular response (DMR) in chronic myeloid leukemia (CML) has been profoundly impacted by tyrosine kinase inhibitors (TKIs). Immunologic surveillance of residual leukemic cells is hypothesized to be one of the critical factors in successful TFR, with self-renewing leukemic stem cells implicated in relapse. Immunological characterization in CML may help to develop novel immunotherapies that specifically target residual leukemic cells upon TKI discontinuation to improve TFR rates. This review focuses on immune dysfunction in newly diagnosed CML patients, and the role that TKIs and other therapies have in restoring immune surveillance. Immune dysfunction and immunosurveillance in CML points towards several emerging areas in the key goals of DMR and TFR, including: (1) Aspects of innate immune system, in particular natural killer cells and the newly emerging target plasmacytoid dendritic cells. (2) The adaptive immune system, with promise shown in regard to leukemia-associated antigen vaccine-induced CD8 cytotoxic T-cells (CTL) responses, increased CTL expansion, and immune checkpoint inhibitors. (3) Immune suppressive myeloid-derived suppressor cells and T regulatory cells that are reduced in DMR and TFR. (4) Immunomodulator mesenchymal stromal cells that critically contribute to leukomogenesis through immunosuppressive properties and TKI- resistance. Therapeutic strategies that leverage existing immunological approaches include donor lymphocyte infusions, that continue to be used, often in combination with TKIs, in patients relapsing following allogeneic stem cell transplant. Furthermore, previous standards-of-care, including interferon-α, hold promise in attaining TFR in the post-TKI era. A deeper understanding of the immunological landscape in CML is therefore vital for both the development of novel and the repurposing of older therapies to improve TFR outcomes.


Subject(s)
Immune System/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Animals , Chronic Disease , Dendritic Cells/drug effects , Dendritic Cells/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Protein Kinase Inhibitors/immunology , Treatment Outcome
17.
Nat Commun ; 12(1): 241, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431824

ABSTRACT

Acute myeloid leukemia (AML) is a typically lethal molecularly heterogeneous disease, with few broad-spectrum therapeutic targets. Unusually, most AML retain wild-type TP53, encoding the pro-apoptotic tumor suppressor p53. MDM2 inhibitors (MDM2i), which activate wild-type p53, and BET inhibitors (BETi), targeting the BET-family co-activator BRD4, both show encouraging pre-clinical activity, but limited clinical activity as single agents. Here, we report enhanced toxicity of combined MDM2i and BETi towards AML cell lines, primary human blasts and mouse models, resulting from BETi's ability to evict an unexpected repressive form of BRD4 from p53 target genes, and hence potentiate MDM2i-induced p53 activation. These results indicate that wild-type TP53 and a transcriptional repressor function of BRD4 together represent a potential broad-spectrum synthetic therapeutic vulnerability for AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Cycle Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Molecular Targeted Therapy , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Blast Crisis/pathology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Leukemic/drug effects , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/antagonists & inhibitors
18.
Cell Mol Life Sci ; 78(3): 843-852, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32936311

ABSTRACT

Senescence is a cellular stress response triggered by diverse stressors, including oncogene activation, where it serves as a bona-fide tumour suppressor mechanism. Senescence can be transmitted to neighbouring cells, known as paracrine secondary senescence. Secondary senescence was initially described as a paracrine mechanism, but recent evidence suggests a more complex scenario involving juxtacrine communication between cells. In addition, single-cell studies described differences between primary and secondary senescent end-points, which have thus far not been considered functionally distinct. Here we discuss emerging concepts in senescence transmission and heterogeneity in primary and secondary senescence on a cellular and organ level.


Subject(s)
Cellular Senescence/physiology , Oncogenes/genetics , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Humans , Jagged-1 Protein/metabolism , Paracrine Communication , Receptors, Notch/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
19.
Cell Stem Cell ; 27(5): 822-839.e8, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32946788

ABSTRACT

Hematopoietic stem cells (HSCs) first emerge in the embryonic aorta-gonad-mesonephros (AGM) region. Studies of model organisms defined intersecting signaling pathways that converge to promote HSC emergence predominantly in the ventral domain of the dorsal aorta. Much less is known about mechanisms driving HSC development in humans. Here, to identify secreted signals underlying human HSC development, we combined spatial transcriptomics analysis of dorsoventral polarized signaling in the aorta with gene expression profiling of sorted cell populations and single cells. Our analysis revealed a subset of aortic endothelial cells with a downregulated arterial signature and a predicted lineage relationship with the emerging HSC/progenitor population. Analysis of the ventrally polarized molecular landscape identified endothelin 1 as an important secreted regulator of human HSC development. The obtained gene expression datasets will inform future studies on mechanisms of HSC development in vivo and on generation of clinically relevant HSCs in vitro.


Subject(s)
Endothelial Cells , Transcriptome , Gonads , Hematopoiesis , Hematopoietic Stem Cells , Humans , Mesonephros , Transcriptome/genetics
20.
Nat Med ; 26(8): 1295-1306, 2020 08.
Article in English | MEDLINE | ID: mdl-32601335

ABSTRACT

Immune-regulatory mechanisms of drug-free remission in rheumatoid arthritis (RA) are unknown. We hypothesized that synovial tissue macrophages (STM), which persist in remission, contribute to joint homeostasis. We used single-cell transcriptomics to profile 32,000 STMs and identified phenotypic changes in patients with early/active RA, treatment-refractory/active RA and RA in sustained remission. Each clinical state was characterized by different frequencies of nine discrete phenotypic clusters within four distinct STM subpopulations with diverse homeostatic, regulatory and inflammatory functions. This cellular atlas, combined with deep-phenotypic, spatial and functional analyses of synovial biopsy fluorescent activated cell sorted STMs, revealed two STM subpopulations (MerTKposTREM2high and MerTKposLYVE1pos) with unique remission transcriptomic signatures enriched in negative regulators of inflammation. These STMs were potent producers of inflammation-resolving lipid mediators and induced the repair response of synovial fibroblasts in vitro. A low proportion of MerTKpos STMs in remission was associated with increased risk of disease flare after treatment cessation. Therapeutic modulation of MerTKpos STM subpopulations could therefore be a potential treatment strategy for RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , Macrophages/immunology , Synovial Fluid/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Biopsy , Cell Lineage/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Joints/immunology , Joints/metabolism , Joints/pathology , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Macrophages/metabolism , Mannose Receptor , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Synovial Fluid/immunology , Synovial Membrane
SELECTION OF CITATIONS
SEARCH DETAIL
...