Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
JCI Insight ; 9(6)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358825

ABSTRACT

Despite effective antibiotic therapy, brain-destructive inflammation often cannot be avoided in pneumococcal meningitis. The causative signals are mediated predominantly through TLR-recruited myeloid differentiation primary response adaptor 88 (MyD88), as indicated by a dramatic pneumococcal meningitis phenotype of Myd88-/- mice. Because lipoproteins and single-stranded RNA are crucial for recognition of Gram-positive bacteria such as Streptococcus pneumoniae by the host immune system, we comparatively analyzed the disease courses of Myd88-/- and Tlr2-/- Tlr13-/- mice. Their phenotypic resemblance indicated TLR2 and -13 as master sensors of S. pneumoniae in the cerebrospinal fluid. A neutralizing anti-TLR2 antibody (T2.5) and chloroquine (CQ) - the latter applied here as an inhibitor of murine TLR13 and its human ortholog TLR8 - abrogated activation of murine and human primary immune cells exposed to antibiotic-treated S. pneumoniae. The inhibitory effect of the T2.5/CQ cocktail was stronger than that of dexamethasone, the current standard adjunctive drug for pneumococcal meningitis. Accordingly, TLR2/TLR13 blockade concomitant with ceftriaxone application significantly improved the clinical course of pneumococcal meningitis compared with treatment with ceftriaxone alone or in combination with dexamethasone. Our study indicates the importance of murine TLR13 and human TLR8, besides TLR2, in pneumococcal meningitis pathology, and suggests their blockade as a promising antibiotic therapy adjunct.


Subject(s)
Meningitis, Pneumococcal , Mice , Humans , Animals , Meningitis, Pneumococcal/drug therapy , Meningitis, Pneumococcal/complications , Meningitis, Pneumococcal/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Toll-Like Receptor 2/metabolism , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Myeloid Differentiation Factor 88 , Toll-Like Receptor 8 , Streptococcus pneumoniae , Brain/metabolism , Dexamethasone/pharmacology
2.
Front Immunol ; 14: 1277033, 2023.
Article in English | MEDLINE | ID: mdl-37869001

ABSTRACT

Introduction: Early sepsis is a life-threatening immune dysregulation believed to feature a "cytokine storm" due to activation of pattern recognition receptors by pathogen and danger associated molecular patterns. However, treatments with single toll-like receptor (TLR) blockers have shown no clinical benefit. We speculated that sepsis patients at the time of diagnosis are heterogeneous in relation to their cytokine production and its potential inhibition by a triple cocktail of TLR blockers. Accordingly, we analyzed inflammatory cytokine production in whole blood assays from early sepsis patients and determined the effects of triple TLR-blockade. Methods: Whole blood of 51 intensive care patients sampled within 24h of meeting Sepsis-3 criteria was incubated for 6h without or with specific TLR2, 4, and 7/8 stimuli or suspensions of heat-killed S. aureus or E. coli bacteria as pan-TLR challenges, and also with a combination of monoclonal antibodies against TLR2 and 4 and chloroquine (endosomal TLR inhibition), subsequent to dose optimization. Concentrations of tumor necrosis factor (TNF), Interleukin(IL)-6, IL-8, IL-10, IL-1α and IL-1ß were measured (multiplex ELISA) before and after incubation. Samples from 11 sex and age-matched healthy volunteers served as controls and for dose-finding studies. Results: Only a fraction of sepsis patient samples revealed ongoing cytokine production ex vivo despite sampling within 24 h of first meeting Sepsis-3 criteria. In dose finding studies, inhibition of TLR2, 4 and endosomal TLRs reliably suppressed cytokine production to specific TLR agonists and added bacteria. However, inflammatory cytokine production ex vivo was only suppressed in the high cytokine producing samples but not in the majority. The suppressive response to TLR-blockade correlated both with intraassay inflammatory cytokine production (r=0.29-0.68; p<0.0001-0.04) and cytokine baseline concentrations (r=0.55; p<0.0001). Discussion: Upon meeting Sepsis-3 criteria for less than 24 h, a mere quarter of patient samples exhibits a strong inflammatory phenotype, as characterized by increased baseline inflammatory cytokine concentrations and a stark TLR-dependent increase upon further ex vivo incubation. Thus, early sepsis patient cohorts as defined by Sepsis-3 criteria are very heterogeneous in regard to inflammation. Accordingly, proper ex vivo assays may be useful in septic individuals before embarking on immunomodulatory treatments.


Subject(s)
Sepsis , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/genetics , Escherichia coli , Staphylococcus aureus , Toll-Like Receptors , Cytokines , Sepsis/drug therapy
3.
Cytotherapy ; 25(8): 821-836, 2023 08.
Article in English | MEDLINE | ID: mdl-37055321

ABSTRACT

BACKGROUND AIMS: Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS: Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS: The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS: Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.


Subject(s)
Extracellular Vesicles , Graft vs Host Disease , Mesenchymal Stem Cells , MicroRNAs , Humans , Animals , Mice , Culture Media, Conditioned/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Graft vs Host Disease/therapy , Mesenchymal Stem Cells/metabolism
4.
PLoS One ; 17(8): e0273247, 2022.
Article in English | MEDLINE | ID: mdl-35981050

ABSTRACT

RATIONALE: The immune profile of sepsis patients is incompletely understood and hyperinflammation and hypoinflammation may occur concurrently or sequentially. Immune checkpoint inhibition (ICI) may counter hypoinflammation but effects are uncertain. We tested the reactivity of septic whole blood to bacteria, Toll-like receptor (TLR) ligands and to ICI. METHODS: Whole blood assays of 61 patients' samples within 24h of meeting sepsis-3 criteria and 12 age and sex-matched healthy volunteers. Measurements included pattern/danger-associated molecular pattern (P/DAMP), cytokine concentrations at baseline and in response to TLR 2, 4, and 7/8 ligands, heat-inactivated Staphylococcus aureus or Escherichia coli, E.coli lipopolysaccharide (LPS), concentration of soluble and cellular immune checkpoint molecules, and cytokine concentrations in response to ICI directed against programmed-death receptor 1 (PD1), PD1-ligand 1, or cytotoxic T-lymphocyte antigen 4, both in the absence and presence of LPS. MAIN RESULTS: In sepsis, concentrations of P/DAMPs and inflammatory cytokines were increased and the latter increased further upon incubation ex vivo. However, cytokine responses to TLR 2, 4, and 7/8 ligands, heat-inactivated S. aureus or E. coli, and E. coli LPS were all depressed. Depression of the response to LPS was associated with increased in-hospital mortality. Despite increased PD-1 expression on monocytes and T-cells, and monocyte CTLA-4 expression, however, addition of corresponding checkpoint inhibitors to assays failed to increase inflammatory cytokine concentrations in the absence and presence of LPS. CONCLUSION: Patients first meeting Sepsis-3 criteria reveal 1) depressed responses to multiple TLR-ligands, bacteria, and bacterial LPS, despite concomitant inflammation, but 2) no response to immune checkpoint inhibition.


Subject(s)
Sepsis , Toll-Like Receptor 2 , Cytokines/metabolism , Escherichia coli/metabolism , Humans , Immune Checkpoint Inhibitors , Ligands , Lipopolysaccharides , Monocytes/metabolism , Sepsis/metabolism , Staphylococcus aureus/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/metabolism
6.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33538775

ABSTRACT

Human memory B cells (MBCs) are generated and diversified in secondary lymphoid tissues throughout the organism. A paired immunoglobulin (Ig)-gene repertoire analysis of peripheral blood (PB) and splenic MBCs from infant, adult, and elderly humans revealed that throughout life, circulating MBCs are comprehensively archived in the spleen. Archive MBC clones are systematically preserved and uncoupled from class-switching. Clonality in the spleen increases steadily, but boosts at midlife, thereby outcompeting small clones. The splenic marginal zone (sMZ) represents a primed MBC compartment, generated from a stochastic exchange within the archive memory pool. This is supported by functional assays, showing that PB and splenic CD21+ MBCs acquire transient CD21high expression upon NOTCH2-stimulation. Our study provides insight that the human MBC system in PB and spleen is composed of three interwoven compartments: the dynamic relationship of circulating, archive, and its subset of primed (sMZ) memory changes with age, thereby contributing to immune aging.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , Immunologic Memory , Spleen/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Biopsy , Blood Donors , Cell Line , Child , Child, Preschool , Coculture Techniques , Female , Humans , Infant , Infant, Newborn , Male , Mesenchymal Stem Cells/metabolism , Mice , Middle Aged , Phenotype , Receptors, Complement 3d/metabolism , Spleen/pathology , Young Adult
7.
J Immunol ; 203(11): 2872-2886, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31636238

ABSTRACT

TLR2 serves as a costimulatory molecule on activated T cells. However, it is unknown how the functionality and antiviral activity of CD8+ T cells are modulated by direct TLR2 signaling. In this study, we looked at the TLR2-mediated enhancement of TCR-driven CD8+ T cell activation in vitro and in woodchuck hepatitis virus transgenic mice. In vitro stimulation of CD8+ T cells purified from C57BL/6 mice showed that TLR2 agonist Pam3CSK4 directly enhanced the TCR-dependent CD8+ T cell activation. Transcriptome analysis revealed that TLR2 signaling increased expression of bioenergy metabolism-related genes in CD8+ T cells, such as IRF4, leading to improved glycolysis and glutaminolysis. This was associated with the upregulation of genes related to immune regulation and functions such as T-bet and IFN-γ. Glycolysis and glutaminolysis were in turn essential for the TLR2-mediated enhancement of T cell activation. Administration of TLR2 agonist Pam3CSK4 promoted the expansion and functionality of vaccine-primed, Ag-specific CD8+ T cells in both wild type and transgenic mice and improved viral suppression. Thus, TLR2 could promote CD8+ T cell immunity through regulating the energy metabolism.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Toll-Like Receptor 2/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Lipopeptides/administration & dosage , Lipopeptides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/immunology
9.
J Clin Invest ; 128(8): 3535-3545, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29771684

ABSTRACT

Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation-inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, P. aeruginosa-binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitute. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy.


Subject(s)
Anti-Bacterial Agents/pharmacology , IgA Deficiency/drug therapy , Immunoglobulin A/pharmacology , Pneumonia, Bacterial/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/immunology , Animals , Humans , Iatrogenic Disease , IgA Deficiency/genetics , IgA Deficiency/immunology , IgA Deficiency/pathology , Mice , Mice, Knockout , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/pathology , Pseudomonas Infections/genetics , Pseudomonas Infections/immunology , Pseudomonas Infections/pathology
10.
EMBO Rep ; 18(12): 2144-2159, 2017 12.
Article in English | MEDLINE | ID: mdl-29097394

ABSTRACT

Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state.


Subject(s)
Giant Cells/microbiology , Macrophages/physiology , Mycobacterium/metabolism , Nitric Oxide/metabolism , Animals , Cell Differentiation , Cells, Cultured , DNA Damage , Genes, p53/physiology , Giant Cells/metabolism , Humans , Macrophages/microbiology , Mice , Mycobacterium/immunology , Nitric Oxide/biosynthesis
11.
Cell Mol Immunol ; 14(12): 997-1008, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28757610

ABSTRACT

The outcome of hepatitis B viral (HBV) infection is determined by the complex interactions between replicating HBV and the immune system. While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively, the contribution of innate immune mechanisms remains to be defined. Here we examined the role of the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model. Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice (WT) and a panel of mouse strains lacking specific innate immunity component expression. We found higher levels of HBV protein production and replication in Tlr2-/-, Tlr23479-/-, 3d/Tlr24-/-, Myd88/Trif-/- and Irak4-/- mice, which was associated with reduced HBV-specific CD8+ T-cell responses in these mice. Importantly, HBV clearance was delayed for more than 2 weeks in 3d/Tlr24-/-, Myd88/Trif-/- and Irak4-/- mice compared to WT mice. HBV-specific CD8+ T-cell responses were functionally impaired for producing the cytokines IFN-γ, TNF-α and IL-2 in TLR signaling-deficient mice compared to WT mice. In conclusion, the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8+ T-cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Hepatitis B virus/immunology , Hepatitis B/immunology , Receptors, Interleukin-1/metabolism , Toll-Like Receptor 2/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Immunomodulation , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Toll-Like Receptor 2/genetics
12.
Article in English | MEDLINE | ID: mdl-28848717

ABSTRACT

Porphyromonas gingivalis is a gram-negative anaerobic periodontal pathogen that persists in dysbiotic mixed-species biofilms alongside a dense inflammatory infiltrate of neutrophils and other leukocytes in the subgingival areas of the periodontium. Toll-like receptor 2 (TLR2) mediates the inflammatory response to P. gingivalis and TLR2-deficient mice resist alveolar bone resorption following oral challenge with this organism. Although, MyD88 is an adaptor protein considered necessary for TLR2-induced inflammation, we now report for the first time that oral challenge with P. gingivalis leads to alveolar bone resorption in the absence of MyD88. Indeed, in contrast to prototypical TLR2 agonists, such as the lipopeptide Pam3CSK4 that activates TLR2 in a strictly MyD88-dependent manner, P. gingivalis strikingly induced TLR2 signaling in neutrophils and macrophages regardless of the presence or absence of MyD88. Moreover, genetic or antibody-mediated inactivation of TLR2 completely reduced cytokine production in P. gingivalis-stimulated neutrophils or macrophages, suggesting that TLR2 plays a non-redundant role in the host response to P. gingivalis. In the absence of MyD88, inflammatory TLR2 signaling in P. gingivalis-stimulated neutrophils or macrophages depended upon PI3K. Intriguingly, TLR2-PI3K signaling was also critical to P. gingivalis evasion of killing by macrophages, since their ability to phagocytose this pathogen was reduced in a TLR2 and PI3K-dependent manner. Moreover, within those cells that did phagocytose bacteria, TLR2-PI3K signaling blocked phago-lysosomal maturation, thereby revealing a novel mechanism whereby P. gingivalis can enhance its intracellular survival. Therefore, P. gingivalis uncouples inflammation from bactericidal activity by substituting TLR2-PI3K in place of TLR2-MyD88 signaling. These findings further support the role of P. gingivalis as a keystone pathogen, which manipulates the host inflammatory response in a way that promotes bone loss but not bacterial clearance. Modulation of these host response factors may lead to novel therapeutic approaches to improve outcomes in disease conditions associated with P. gingivalis.


Subject(s)
Alveolar Bone Loss/microbiology , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Myeloid Differentiation Factor 88/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Porphyromonas gingivalis/pathogenicity , Toll-Like Receptor 2/metabolism , Animals , Cytokines/analysis , Humans , Inflammation/immunology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Neutrophils/immunology , Neutrophils/microbiology , Phosphatidylinositol 3-Kinases/genetics , Porphyromonas gingivalis/genetics , RAW 264.7 Cells , Toll-Like Receptor 2/genetics
13.
Nat Commun ; 8: 14600, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300057

ABSTRACT

Toll-like receptors (TLRs) are located either on the cell surface or intracellularly in endosomes and their activation normally contributes to the induction of protective immune responses. However, in cancer their activation by endogenous ligands can modulate tumour progression. It is currently unknown how endosomal TLRs regulate endogenous anti-tumour immunity. Here we show that TLR3, 7 and 9 deficiencies on host cells, after initial tumour growth, result in complete tumour regression and induction of anti-tumour immunity. Tumour regression requires the combined absence of all three receptors, is dependent on both CD4 and CD8 T cells and protects the mice from subsequent tumour challenge. While tumours in control mice are infiltrated by higher numbers of regulatory T cells, tumour regression in TLR-deficient mice is paralleled by altered vascular structure and strongly induced influx of cytotoxic and cytokine-producing effector T cells. Thus, endosomal TLRs may represent a molecular link between the inflamed tumour cell phenotype, anti-tumour immunity and the regulation of T-cell activation.


Subject(s)
Neoplasms, Experimental/immunology , T-Lymphocytes/physiology , Toll-Like Receptors/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Endosomes/metabolism , Female , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/metabolism
14.
J Allergy Clin Immunol ; 139(2): 667-678.e5, 2017 02.
Article in English | MEDLINE | ID: mdl-27544739

ABSTRACT

BACKGROUND: Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. OBJECTIVE: We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. METHODS: L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4+ T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. RESULTS: L lactis G121-treated murine BMDCs and human moDCs released TH1-polarizing cytokines and induced TH1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of TH1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13-/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The TH1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. CONCLUSION: Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8.


Subject(s)
Antigens, Bacterial/immunology , Dendritic Cells/immunology , Endosomes/metabolism , Lactococcus lactis/immunology , Lung/immunology , Milk Hypersensitivity/immunology , RNA, Bacterial/immunology , Animals , Cattle , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Milk Hypersensitivity/prevention & control , Nod2 Signaling Adaptor Protein/metabolism , Th1 Cells/immunology , Toll-Like Receptor 8/antagonists & inhibitors , Toll-Like Receptors/genetics
15.
Cell Physiol Biochem ; 39(4): 1271-80, 2016.
Article in English | MEDLINE | ID: mdl-27606466

ABSTRACT

BACKGROUND/AIMS: Viral infections represent a global health problem with the need for new viral therapies and better understanding of the immune response during infection. The most immediate and potent anti-viral defense mechanism is the production of type I interferon (IFN-I) which are activated rapidly following recognition of viral infection by host pathogen recognition receptors (PRR). The mechanisms of innate cellular signaling downstream of PRR activation remain to be fully understood. In the present study, we demonstrate that CASP2 and RIPK1 domain-containing adaptor with death domain (CRADD/RAIDD) is a critical component in type I IFN production. METHODS: The role of RAIDD during IFN-I production was investigated using western blot, shRNA mediated lentiviral knockdown, immunoprecipitation and IFN-I driven dual luciferase assay. RESULTS: Immunoprecipitation analysis revealed the molecular interaction of RAIDD with interferon regulatory factor 7 (IRF7) and its phosphorylating kinase IKKε. Using an IFN-4α driven dual luciferase analysis in RAIDD deficient cells, type I IFN activation by IKKε and IRF7 was dramatically reduced. Furthermore, deletion of either the caspase recruitment domain (CARD) or death domain (DD) of RAIDD inhibited IKKε and IRF7 mediated interferon-4α activation. CONCLUSION: We have identified that the adaptor molecule RAIDD coordinates IKKε and IRF7 interaction to ensure efficient expression of type I interferon.


Subject(s)
CRADD Signaling Adaptor Protein/genetics , I-kappa B Kinase/genetics , Interferon Regulatory Factor-7/genetics , Toll-Like Receptor 3/genetics , Animals , CRADD Signaling Adaptor Protein/immunology , Caspase Activation and Recruitment Domain , Gene Expression Regulation , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , I-kappa B Kinase/immunology , Interferon Regulatory Factor-7/immunology , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Lentivirus/genetics , Lentivirus/metabolism , Luciferases/genetics , Luciferases/metabolism , Mice , Plasmids/chemistry , Plasmids/metabolism , Poly I-C/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Signal Transduction , Toll-Like Receptor 3/immunology
16.
J Leukoc Biol ; 99(6): 1057-64, 2016 06.
Article in English | MEDLINE | ID: mdl-26992431

ABSTRACT

Migration of leukocytes to the site of microbial infection is important for the development of effective host immunity. Recombinant modified vaccinia virus Ankara is frequently used as a viral vector vaccine in preclinical and clinical studies. In comparison to other vaccinia virus strains, modified vaccinia virus Ankara robustly induces chemokine expression and rapid attraction of leukocytes. In particular, chemokine (C-C motif) ligand 2 (CCL2) has been shown to be critical for leukocyte recruitment to the lung. In this study, MVA-induced CCL2 expression in murine macrophages was dependent on type I interferon receptor and not Toll-like receptor-2. The critical role of type I interferon receptor signaling for CCL2 production in the lung was confirmed in type I interferon receptor-deficient mice (Ifnar1(-/-)). In addition, comparing Ifnar1(-/-) and Ccl2(-/-) mice with wild-type mice, we observed a similar impairment in the recruitment of natural killer and T cells to the lung after intranasal infection with modified vaccinia virus Ankara. Conversely, neutrophil recruitment was not affected in Ifnar1(-/-) and Ccl2(-/-) mice. We conclude that type I interferons, besides their known antiviral properties, can initiate the recruitment and activation of leukocytes via induction of chemokine expression including CCL2.


Subject(s)
Chemokine CCL2/metabolism , Killer Cells, Natural/immunology , Lung/immunology , Lung/virology , Receptor, Interferon alpha-beta/metabolism , T-Lymphocytes/immunology , Vaccinia virus/immunology , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/virology , Chemokine CCL2/genetics , Female , Inflammation/pathology , Interferon Type I/genetics , Interferon Type I/metabolism , Macrophages/metabolism , Macrophages/virology , Male , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/metabolism , Transcription, Genetic , Up-Regulation
17.
J Immunol ; 196(6): 2733-41, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26873993

ABSTRACT

Streptococci are common human colonizers with a species-specific mucocutaneous distribution. At the same time, they are among the most important and most virulent invasive bacterial pathogens. Thus, site-specific cellular innate immunity, which is predominantly executed by resident and invading myeloid cells, has to be adapted with respect to streptococcal sensing, handling, and response. In this article, we show that TLR13 is the critical mouse macrophage (MΦ) receptor in the response to group B Streptococcus, both in bone marrow-derived MΦs and in mature tissue MΦs, such as those residing in the lamina propria of the colon and the dermis, as well as in microglia. In contrast, TLR13 and its chaperone UNC-93B are dispensable for a potent cytokine response of blood monocytes to group B Streptococcus, although monocytes serve as the key progenitors of intestinal and dermal MΦs. Furthermore, a specific role for TLR13 with respect to MΦ function is supported by the response to staphylococci, where TLR13 and UNC-93B limit the cytokine response in bone marrow-derived MΦs and microglia, but not in dermal MΦs. In summary, TLR13 is a critical and site-specific receptor in the single MΦ response to ß-hemolytic streptococci.


Subject(s)
Macrophages/physiology , Membrane Transport Proteins/metabolism , Streptococcal Infections/immunology , Streptococcus agalactiae/immunology , Toll-Like Receptors/metabolism , Animals , Colon/pathology , Cytokines/metabolism , Hemolysis , Host-Pathogen Interactions , Immunity, Mucosal/genetics , Immunity, Mucosal/immunology , Macrophages/microbiology , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/pathology , Organ Specificity , Skin/pathology , Toll-Like Receptors/genetics
18.
EMBO Rep ; 16(12): 1656-63, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26545385

ABSTRACT

Toll-like receptor (TLR) 13 and TLR2 are the major sensors of Gram-positive bacteria in mice. TLR13 recognizes Sa19, a specific 23S ribosomal (r) RNA-derived fragment and bacterial modification of Sa19 ablates binding to TLR13, and to antibiotics such as erythromycin. Similarly, RNase A-treated Staphylococcus aureus activate human peripheral blood mononuclear cells (PBMCs) only via TLR2, implying single-stranded (ss) RNA as major stimulant. Here, we identify human TLR8 as functional TLR13 equivalent that promiscuously senses ssRNA. Accordingly, Sa19 and mitochondrial (mt) 16S rRNA sequence-derived oligoribonucleotides (ORNs) stimulate PBMCs in a MyD88-dependent manner. These ORNs, as well as S. aureus-, Escherichia coli-, and mt-RNA, also activate differentiated human monocytoid THP-1 cells, provided they express TLR8. Moreover, Unc93b1(-/-)- and Tlr8(-/-)-THP-1 cells are refractory, while endogenous and ectopically expressed TLR8 confers responsiveness in a UR/URR RNA ligand consensus motif-dependent manner. If TLR8 function is inhibited by suppression of lysosomal function, antibiotic treatment efficiently blocks bacteria-driven inflammatory responses in infected human whole blood cultures. Sepsis therapy might thus benefit from interfering with TLR8 function.


Subject(s)
Escherichia coli/genetics , Escherichia coli/immunology , RNA, Bacterial/chemistry , RNA, Bacterial/immunology , RNA/chemistry , RNA/immunology , Toll-Like Receptor 8/immunology , Animals , Cell Line, Tumor , Humans , Leukocytes, Mononuclear/immunology , Mice , Oligoribonucleotides , RNA/genetics , RNA, Bacterial/genetics , RNA, Mitochondrial , RNA, Ribosomal, 16S , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology , Toll-Like Receptor 8/chemistry , Toll-Like Receptor 8/genetics
19.
Mol Immunol ; 67(2 Pt B): 636-41, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26319313

ABSTRACT

Immune stimulatory pathogen associated molecular patterns (PAMPs) are major drivers of infection pathology. Infections with Gram-negative bacteria or negatively polar and single stranded RNA influenza virus are prominent causes of morbidity and mortality. Toll-like receptor (TLR) 4 is a major host sensor for both of the two infections. In order to inhibit TLR4 driven immune activation we recently developed synthetic tetra-acylated lipid A mimetics based on a conformationally restricted ßGlcN(1↔1)αGlcN disaccharide scaffold (DA-compounds) that antagonized ectopically overexpressed human and murine TLR4/MD-2 complexes. Here we comparatively analyzed human peripheral blood mononuclear cell (hPBMC) and murine bone marrow derived macrophage (mBM) activation upon 30 min of preincubation in vitro with six variably acylated DA-compounds. 16 h subsequent to consequent LPS challenge, we sampled culture supernatants for cytokine and NO concentration analysis. Four compounds significantly inhibited release of both TNF and IL-6 by hPBMCs upon LPS challenge. In contrast, three compounds effectively inhibited mBM production of MIP-2 and KC, and even five of them inhibited IL-6 and NO production. LPS driven like other TLR ligand driven mBM TNF release was largely unimpaired. The inhibitory effect was specific in that Clo75 driven cytokine release by both hPBMCs and mBMs was unimpaired by the compounds analyzed. Our results indicate biological species specificity of LPS antagonism by variably tetraacylated lipid A mimetics and validate three out of six DA-antagonists as promising candidates for development of therapeutically applicable anti-inflammatory compounds.


Subject(s)
Glucose/chemistry , Leukocytes, Mononuclear/metabolism , Lipid A/chemistry , Lipid A/pharmacology , Molecular Mimicry , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Bone Marrow Cells/metabolism , Disaccharides/chemistry , HEK293 Cells , Humans , Leukocytes, Mononuclear/drug effects , Mice , Species Specificity , Toll-Like Receptor 4/metabolism
20.
PLoS One ; 10(3): e0119727, 2015.
Article in English | MEDLINE | ID: mdl-25756897

ABSTRACT

Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13-/- cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms.


Subject(s)
Streptococcus pyogenes/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/metabolism , Animals , HEK293 Cells , Humans , Immunity, Innate , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , Phylogeny , RNA, Bacterial/immunology , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL