Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442422

ABSTRACT

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/chemistry , DNA, Helminth/chemistry , Nuclear Proteins/chemistry , Nucleic Acid Conformation , Nucleosomes/chemistry , Protein Multimerization , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , DNA, Helminth/metabolism , Nucleosomes/metabolism , Nucleosomes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL