Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Open Forum Infect Dis ; 10(11): ofad515, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37965640

ABSTRACT

Background: Neurological opportunistic infections cause significant morbidity and mortality in people with human immunodeficiency virus (HIV) but are difficult to diagnose. Methods: One hundred forty people with HIV with acute neurological symptoms from Iquitos, Peru, were evaluated for cerebral toxoplasmosis with quantitative polymerase chain reaction (qPCR) of cerebrospinal fluid (CSF) and for cryptococcal meningitis with cryptococcal antigen test (CrAg) in serum or CSF. Differences between groups were assessed with standard statistical methods. A subset of samples was evaluated by metagenomic next-generation sequencing (mNGS) of CSF to compare standard diagnostics and identify additional diagnoses. Results: Twenty-seven participants were diagnosed with cerebral toxoplasmosis by qPCR and 13 with cryptococcal meningitis by CrAg. Compared to participants without cerebral toxoplasmosis, abnormal Glasgow Coma Scale score (P = .05), unilateral focal motor signs (P = .01), positive Babinski reflex (P = .01), and multiple lesions on head computed tomography (CT) (P = .002) were associated with cerebral toxoplasmosis. Photophobia (P = .03) and absence of lesions on head CT (P = .02) were associated with cryptococcal meningitis. mNGS of 42 samples identified 8 cases of cerebral toxoplasmosis, 7 cases of cryptococcal meningitis, 5 possible cases of tuberculous meningitis, and incidental detections of hepatitis B virus (n = 1) and pegivirus (n = 1). mNGS had a positive percentage agreement of 71% and a negative percentage agreement of 91% with qPCR for T gondii. mNGS had a sensitivity of 78% and specificity of 100% for Cryptococcus diagnosis. Conclusions: An infection was diagnosed by any method in only 34% of participants, demonstrating the challenges of diagnosing neurological opportunistic infections in this population and highlighting the need for broader, more sensitive diagnostic tests for central nervous system infections.

2.
PLoS Pathog ; 19(7): e1011495, 2023 07.
Article in English | MEDLINE | ID: mdl-37418488

ABSTRACT

Mycobacterium tuberculosis (M.tb) infection causes marked tissue inflammation leading to lung destruction and morbidity. The inflammatory extracellular microenvironment is acidic, however the effect of this acidosis on the immune response to M.tb is unknown. Using RNA-seq we show that acidosis produces system level transcriptional change in M.tb infected human macrophages regulating almost 4000 genes. Acidosis specifically upregulated extracellular matrix (ECM) degradation pathways with increased expression of Matrix metalloproteinases (MMPs) which mediate lung destruction in Tuberculosis. Macrophage MMP-1 and -3 secretion was increased by acidosis in a cellular model. Acidosis markedly suppresses several cytokines central to control of M.tb infection including TNF-α and IFN-γ. Murine studies demonstrated expression of known acidosis signaling G-protein coupled receptors OGR-1 and TDAG-8 in Tuberculosis which are shown to mediate the immune effects of decreased pH. Receptors were then demonstrated to be expressed in patients with TB lymphadenitis. Collectively, our findings show that an acidic microenvironment modulates immune function to reduce protective inflammatory responses and increase extracellular matrix degradation in Tuberculosis. Acidosis receptors are therefore potential targets for host directed therapy in patients.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Tuberculosis/microbiology , Macrophages/metabolism , Signal Transduction , Extracellular Matrix/metabolism
3.
Sci Rep ; 13(1): 9827, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330592

ABSTRACT

Accurate and rapid point-of-care (PoC) diagnostics are critical to the control of the COVID-19 pandemic. The current standard for accurate diagnosis of SARS-CoV-2 is laboratory-based reverse transcription polymerase chain reaction (RT-PCR) assays. Here, a preliminary prospective performance evaluation of the QuantuMDx Q-POC SARS-CoV-2 RT-PCR assay is reported. Between November 2020 and March 2021, 49 longitudinal combined nose/throat (NT) swabs from 29 individuals hospitalised with RT-PCR confirmed COVID-19 were obtained at St George's Hospital, London. In addition, 101 mid-nasal (MN) swabs were obtained from healthy volunteers in June 2021. These samples were used to evaluate the Q-POC SARS-CoV-2 RT-PCR assay. The primary analysis was to compare the sensitivity and specificity of the Q-POC test against a reference laboratory-based RT-PCR assay. The overall sensitivity of the Q-POC test compared with the reference test was 96.88% (83.78- 99.92% CI) for a cycle threshold (Ct) cut-off value for the reference test of 35 and 80.00% (64.35-90.95% CI) without altering the reference test's Ct cut-off value of 40. The Q-POC test is a sensitive, specific and rapid PoC test for SARS-CoV-2 at a reference Ct cut-off value of 35. The Q-POC test provides an accurate option for RT-PCR at PoC without the need for sample pre-processing and laboratory handling, enabling rapid diagnosis and clinical triage in acute care and other settings.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Point-of-Care Systems , Pandemics , Prospective Studies , COVID-19 Testing , Clinical Laboratory Techniques , Sensitivity and Specificity
4.
Front Cell Neurosci ; 17: 1183322, 2023.
Article in English | MEDLINE | ID: mdl-37323586

ABSTRACT

Neurocysticercosis (NCC) is the most common parasitic disease affecting the nervous system and is a leading cause of acquired epilepsy worldwide, as well as cognitive impairment, especially affecting memory. The aim of this study was to evaluate the effect of NCC on spatial working memory and its correlation with hippocampal neuronal density, in a rat model of NCC. This experimental study was conducted on female (n = 60) and male (n = 73) Holtzman rats. NCC was induced by intracranial inoculation of T. solium oncospheres in 14 day-old-rats. Spatial working memory was assessed using the T-maze test at 3, 6, 9, and 12 months post-inoculation, and sensorimotor evaluation was performed at 12 months post-inoculation. Hippocampal neuronal density was evaluated by immunostaining of NeuN-positive cells of the CA1 region. Of the rats inoculated with T. solium oncospheres, 87.2% (82/94) developed NCC. The study showed a significant decline in spatial working memory over a 1-year follow-up period in rats experimentally infected with NCC. Males showed an early decline that started at 3 months, while females demonstrated it at 9 months. Additionally, a decrease in neuronal density was observed in the hippocampus of NCC-infected rats, with a more significant reduction in rats with cysts in the hippocampus than in rats with cysts in other brain areas and control rats. This rat model of NCC provides valuable support for the relationship between neurocysticercosis and spatial working memory deficits. Further investigations are required to determine the mechanisms involved in cognitive impairment and establish the basis for future treatments.

5.
J Pharm Biomed Anal ; 215: 114749, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35447489

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the 10 leading causes of death worldwide, especially in low-income areas. A rapid, low-cost diagnostic assay for TB with high sensitivity and specificity is not currently available. Bio-functionalized magnetic nanoparticles (MNPs) which are able to efficiently detect and concentrate biomolecules from complex biological samples, allows improving the diagnostic immunoassays. In this way, a proof-of-concept of MNP-based sandwich immunoassay was developed to detect various MTB protein antigens. The superficial and secretory antigenic proteins considered in this research were: CFP10, ESAT6, MTC28, MPT64, 38 kDa protein, Ag85B, and MoeX. The proteins were cloned and expressed in an E. coli system. Polyclonal antibodies (ab) against the recombinant antigens were elicited in rabbits and mice. Antibodies were immobilized on the surface of amine-silanized nanoparticles (MNP@Si). The functionalized MNP@Si@ab were tested in a colorimetric sandwich enzyme-linked immunosorbent assay (sELISA-MNP@Si@ab) to recognize the selected antigens in sputum samples. The selected MTB antigens were successfully detected in sputum from TB patients in a shorter time (~ 4 h) using the sELISA-MNP@Si@ab, compared to the conventional sELISA (~15 h) standardized in home. Moreover, the sELISA-MNP@Si@ab showed the higher sensitivity in the real biological samples from infected patients.


Subject(s)
Magnetite Nanoparticles , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Animals , Antigens, Bacterial , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Humans , Mice , Rabbits , Sensitivity and Specificity
6.
Sci Rep ; 12(1): 3351, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233014

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2) has spread globally since its emergence in 2019. Most SARS-CoV-2 infections generate immune responses leading to rising levels of immunoglobulins (Ig) M, A and G which can be detected using diagnostic tests including enzyme-linked immunosorbent assays (ELISA). Whilst implying previous SARS-CoV-2 infection, the detection of Ig by ELISA does not guarantee the presence of neutralising antibodies (NAb) that can prevent the virus infecting cells. Plaque reduction neutralisation tests (PRNT) detect NAb, but are not amenable to mass testing as they take several days and require use of SARS-CoV-2 in high biocontainment laboratories. We evaluated the ability of IgG and IgM ELISAs targeting SARS-CoV-2 spike subunit 1 receptor binding domain (S1-RBD), and spike subunit 2 (S2) and nucleocapsid protein (NP), at predicting the presence and magnitude of NAb determined by PRNT. IgG S2 + NP ELISA was 96.8% [95% CI 83.8-99.9] sensitive and 88.9% [95% CI 51.8-99.7] specific at predicting the presence of NAbs (PRNT80 > 1:40). IgG and IgM S1-RBD ELISAs correlated with PRNT titre, with higher ELISA results increasing the likelihood of a robust neutralising response. The IgM S1-RBD assay can be used as a rapid, high throughput test to approximate the magnitude of NAb titre.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged
8.
PLoS Negl Trop Dis ; 15(7): e0009551, 2021 07.
Article in English | MEDLINE | ID: mdl-34237072

ABSTRACT

BACKGROUND: Individuals infected with SARS-CoV-2 develop neutralising antibodies. We investigated the proportion of individuals with SARS-CoV-2 neutralising antibodies after infection and how this proportion varies with selected covariates. METHODOLOGY/PRINCIPAL FINDINGS: This systematic review and meta-analysis examined the proportion of individuals with SARS-CoV-2 neutralising antibodies after infection and how these proportions vary with selected covariates. Three models using the maximum likelihood method assessed these proportions by study group, covariates and individually extracted data (protocol CRD42020208913). A total of 983 reports were identified and 27 were included. The pooled (95%CI) proportion of individuals with neutralising antibodies was 85.3% (83.5-86.9) using the titre cut off >1:20 and 83.9% (82.2-85.6), 70.2% (68.1-72.5) and 54.2% (52.0-56.5) with titres >1:40, >1:80 and >1:160, respectively. These proportions were higher among patients with severe COVID-19 (e.g., titres >1:80, 84.8% [80.0-89.2], >1:160, 74.4% [67.5-79.7]) than those with mild presentation (56.7% [49.9-62.9] and 44.1% [37.3-50.6], respectively) and lowest among asymptomatic infections (28.6% [17.9-39.2] and 10.0% [3.7-20.1], respectively). IgG and neutralising antibody levels correlated poorly. CONCLUSIONS/SIGNIFICANCE: 85% of individuals with proven SARS-CoV-2 infection had detectable neutralising antibodies. This proportion varied with disease severity, study setting, time since infection and the method used to measure antibodies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Acute Disease , COVID-19/epidemiology , Convalescence , Humans , Prevalence
9.
Front Immunol ; 12: 631696, 2021.
Article in English | MEDLINE | ID: mdl-34093524

ABSTRACT

In 2019 10 million people developed symptomatic tuberculosis (TB) disease and 1.2 million died. In active TB the inflammatory response causes tissue destruction, which leads to both acute morbidity and mortality. Tissue destruction in TB is driven by host innate immunity and mediated via enzymes, chiefly matrix metalloproteinases (MMPs) which are secreted by leukocytes and stromal cells and degrade the extracellular matrix. Here we review the growing evidence implicating platelets in TB immunopathology. TB patients typically have high platelet counts, which correlate with disease severity, and a hypercoagulable profile. Platelets are present in human TB granulomas and platelet-associated gene transcripts are increased in TB patients versus healthy controls. Platelets most likely drive TB immunopathology through their effect on other immune cells, particularly monocytes, to lead to upregulation of activation markers, increased MMP secretion, and enhanced phagocytosis. Finally, we consider current evidence supporting use of targeted anti-platelet agents in the treatment of TB due to growing interest in developing host-directed therapies to limit tissue damage and improve treatment outcomes. In summary, platelets are implicated in TB disease and contribute to MMP-mediated tissue damage via their cellular interactions with other leukocytes, and are potential targets for novel host-directed therapies.


Subject(s)
Platelet Activation/immunology , Tuberculosis/immunology , Blood Platelets/drug effects , Blood Platelets/immunology , Extracellular Matrix/immunology , Humans , Immunity, Innate/drug effects , Inflammation , Leukocytes/drug effects , Leukocytes/immunology , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/therapeutic use , Signal Transduction/drug effects , Tuberculosis/drug therapy
10.
Emerg Infect Dis ; 27(1)2021 01.
Article in English | MEDLINE | ID: mdl-33256890

ABSTRACT

We investigated the dynamics of seroconversion in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. During March 29-May 22, 2020, we collected serum samples and associated clinical data from 177 persons in London, UK, who had SARS-CoV-2 infection. We measured IgG against SARS-CoV-2 and compared antibody levels with patient outcomes, demographic information, and laboratory characteristics. We found that 2.0%-8.5% of persons did not seroconvert 3-6 weeks after infection. Persons who seroconverted were older, were more likely to have concurrent conditions, and had higher levels of inflammatory markers. Non-White persons had higher antibody concentrations than those who identified as White; these concentrations did not decline during follow-up. Serologic assay results correlated with disease outcome, race, and other risk factors for severe SARS-CoV-2 infection. Serologic assays can be used in surveillance to clarify the duration and protective nature of humoral responses to SARS-CoV-2 infection.


Subject(s)
COVID-19/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2 , Seroconversion , Adult , Aged , Antibodies, Viral/blood , COVID-19/physiopathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction
11.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: mdl-33204676

ABSTRACT

The #COVID19 pandemic has emphasised major global health inequities: this editorial argues lessons learnt from TB must remind us of the gaps in the research agenda that must be addressed to ensure that scientific advances are equitably disseminated https://bit.ly/3bTZHS3.

12.
Int J Mycobacteriol ; 9(2): 121-137, 2020.
Article in English | MEDLINE | ID: mdl-32474533

ABSTRACT

Background: Rifampicin (RIF) resistance in Mycobacterium tuberculosis is frequently caused by mutations in the rpoB gene. These mutations are associated with a fitness cost, which can be overcome by compensatory mutations in other genes, among which rpoC may be the most important. We analyzed 469 Peruvian M. tuberculosis clinical isolates to identify compensatory mutations in rpoC/rpoA associated with RIF resistance. Methods: The M. tuberculosis isolates were collected and tested for RIF susceptibility and spoligotyping. Samples were sequenced and aligned to the reference genome to identify mutations. By analyzing the sequences and the metadata, we identified a list of rpoC mutations exclusively associated with RIF resistance and mutations in rpoB. We then evaluated the distribution of these mutations along the protein sequence and tridimensional structure. Results: One hundred and twenty-five strains were RIF susceptible and 346 were resistant. We identified 35 potential new compensatory mutations, some of which were distributed on the interface surface between rpoB and rpoC, arising in clusters and suggesting the presence of hotspots for compensatory mutations. Conclusion: This study identifies 35 putative novel compensatory mutations in the ß' subunit of M. tuberculosis RNApol. Six of these (S428T, L507V, A734V, I997V, and V1252LM) are considered most likely to have a compensatory role, as they fall in the interaction zone of the two subunits and the mutation did not lead to any change in the protein's physical-chemical properties.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Tuberculosis, Multidrug-Resistant/microbiology , Humans , Microbial Sensitivity Tests , Mutation , Peru/epidemiology , Tuberculosis, Multidrug-Resistant/epidemiology
13.
Sci Rep ; 10(1): 8356, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433489

ABSTRACT

Pyrazinamide (PZA) is an antibiotic used in first- and second-line tuberculosis treatment regimens. Approximately 50% of multidrug-resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also PZA resistant. Despite the key role played by PZA, its mechanisms of action are not yet fully understood. It has been postulated that pyrazinoic acid (POA), the hydrolyzed product of PZA, could inhibit trans-translation by binding to Ribosomal protein S1 (RpsA) and competing with tmRNA, the natural cofactor of RpsA. Subsequent data, however, indicate that these early findings resulted from experimental artifact. Hence, in this study we assess the capacity of POA to compete with tmRNA for RpsA. We evaluated RpsA wild type (WT), RpsA ∆A438, and RpsA ∆A438 variants with truncations towards the carboxy terminal end. Interactions were measured using Nuclear Magnetic Resonance spectroscopy (NMR), Isothermal Titration Calorimetry (ITC), Microscale Thermophoresis (MST), and Electrophoretic Mobility Shift Assay (EMSA). We found no measurable binding between POA and RpsA (WT or variants). This suggests that RpsA may not be involved in the mechanism of action of PZA in Mycobacterium tuberculosis, as previously thought. Interactions observed between tmRNA and RpsA WT, RpsA ∆A438, and each of the truncated variants of RpsA ∆A438, are reported.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Mycobacterium tuberculosis/metabolism , Pyrazinamide/analogs & derivatives , Ribosomal Proteins/metabolism , Antitubercular Agents/metabolism , Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Pyrazinamide/metabolism , Pyrazinamide/pharmacology , Pyrazinamide/therapeutic use , RNA, Bacterial/metabolism , Ribosomal Proteins/genetics
14.
J Clin Microbiol ; 58(5)2020 04 23.
Article in English | MEDLINE | ID: mdl-32132191

ABSTRACT

Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Here, for the first time, MODS culture at neutral pH was evaluated using high PZA concentrations (400 and 800 µg/ml) to determine PZA susceptibility directly from sputum samples. Sputum samples were cultured with PZA for up to 21 days at 37°C. Plate reading was performed at two time points: R1 (mean, 10 days) and R2 (mean, 13 days) for each PZA concentration. A consensus reference test, composed of MGIT-PZA, pncA sequencing, and the classic Wayne test, was used. A total of 182 samples were evaluated. The sensitivity and specificity for 400 µg/ml ranged from 76.9 to 89.7 and from 93.0 to 97.9%, respectively, and for 800 µg/ml ranged from 71.8 to 82.1 and from 95.8 to 98.6%, respectively. Compared to MGIT-PZA, our test showed a similar turnaround time (medians of 10 and 12 days for PZA-sensitive and -resistant isolates, respectively). In conclusion, MODS-PZA is presented as a fast, simple, and low-cost DST that could complement the MODS assay to evaluate resistance to the principal first-line antituberculosis drugs. Further optimization of test conditions would be useful in order to increase its performance.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Amidohydrolases/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Mutation , Pyrazinamide/pharmacology , Sputum , Tuberculosis, Multidrug-Resistant/drug therapy
15.
J Bacteriol ; 202(2)2020 01 02.
Article in English | MEDLINE | ID: mdl-31636108

ABSTRACT

Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 µM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 µM) and ZnuA (1 µM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat.


Subject(s)
Mycobacterium tuberculosis/enzymology , Nicotinamidase/metabolism , Pyrazinamide/pharmacology , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Metallochaperones , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Pyrazinamide/analogs & derivatives
16.
Int J Infect Dis ; 80S: S29-S31, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30802622

ABSTRACT

The prevalence of non-communicable diseases is increasing worldwide, which coincides with the persistence of infectious diseases including tuberculosis. These can synergistically affect individual and population health. Three non-communicable diseases that are relevant because of their associated morbidity, mortality and disability are type 2 diabetes mellitus, chronic kidney disease and rheumatoid arthritis. There is some evidence that patients with these conditions are at increased risk of acquiring latent tuberculosis infection (LTBI) and of this progressing to active disease. Unfortunately, evidence on accurate testing and effective prophylactic treatment in these populations is lacking. This review discusses current evidence and recommendations for management of LTBI in these patients.


Subject(s)
Arthritis, Rheumatoid/complications , Comorbidity , Diabetes Mellitus, Type 2/complications , Latent Tuberculosis/complications , Renal Insufficiency, Chronic/complications , Humans
18.
J Clin Microbiol ; 57(2)2019 02.
Article in English | MEDLINE | ID: mdl-30429257

ABSTRACT

Although pyrazinamide (PZA) is a key component of first- and second-line tuberculosis treatment regimens, there is no gold standard to determine PZA resistance. Approximately 50% of multidrug-resistant tuberculosis (MDR-TB) and over 90% of extensively drug-resistant tuberculosis (XDR-TB) strains are also PZA resistant. pncA sequencing is the endorsed test to evaluate PZA susceptibility. However, molecular methods have limitations for their wide application. In this study, we standardized and evaluated a new method, MODS-Wayne, to determine PZA resistance. MODS-Wayne is based on the detection of pyrazinoic acid, the hydrolysis product of PZA, directly in the supernatant of sputum cultures by detecting a color change following the addition of 10% ferrous ammonium sulfate. Using a PZA concentration of 800 µg/ml, sensitivity and specificity were evaluated at three different periods of incubation (reading 1, reading 2, and reading 3) using a composite reference standard (MGIT-PZA, pncA sequencing, and the classic Wayne test). MODS-Wayne was able to detect PZA resistance, with a sensitivity and specificity of 92.7% and 99.3%, respectively, at reading 3. MODS-Wayne had an agreement of 93.8% and a kappa index of 0.79 compared to the classic Wayne test, an agreement of 95.3% and kappa index of 0.86 compared to MGIT-PZA, and an agreement of 96.9% and kappa index of 0.90 compared to pncA sequencing. In conclusion, MODS-Wayne is a simple, fast, accurate, and inexpensive approach to detect PZA resistance, making this an attractive assay especially for low-resource countries, where TB is a major public health problem.


Subject(s)
Antitubercular Agents/pharmacology , Colorimetry/methods , Drug Resistance, Bacterial , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Pyrazinamide/pharmacology , Sputum/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Colorimetry/standards , Female , Humans , Male , Microbial Sensitivity Tests/standards , Middle Aged , Sensitivity and Specificity , Tuberculosis/microbiology , Young Adult
19.
Afr J Infect Dis ; 12(2): 47-54, 2018.
Article in English | MEDLINE | ID: mdl-30109286

ABSTRACT

BACKGROUND: The changes in body composition markers (weight, fat mass, lean mass, and BMI) over time can be associated with TB treatment outcome among HIV-infected patients. The aim of this study was to investigate whether changes in fat mass and lean mass were associated with the treatment response among patients with HIV infection and pulmonary tuberculosis. MATERIALS AND METHODS: This was a prospective cohort study. Data from HIV-infected patients commencing TB therapy were analyzed. This included body weight measurement using bioimpedance equipment at baseline, one month, and two months after starting TB treatment. RESULTS: The study was conducted in 125 patients, 17 patients (13.6%) died during treatment, of which 5 died during the first month of treatment, 4 during the second month and 8 after the second month. The group of patients with good response, increased their weight by 1.3 kg (p <0.001) at the end of the first month of TB treatment and 2.6 kg in the second month (p <0.001), and body fat increase was 1.2 Kg (p <0.001) and 2.3 kg (p <0.001), the first and second month respectively. The group of patients who died had lost 2.1 kg fat mass after the first month (p <0.001) and 3.7 kg in the second month (p <0.001). CONCLUSIONS: Our results show that the weight change during TB treatment (increased fat mass) helps us predict therapeutic response. Weight loss during the first month of starting therapy should be evaluated thoroughly to identify the probable cause of treatment failure.

20.
Am J Respir Crit Care Med ; 198(2): 245-255, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29420060

ABSTRACT

RATIONALE: Platelets may interact with the immune system in tuberculosis (TB) to regulate human inflammatory responses that lead to morbidity and spread of infection. OBJECTIVES: To identify a functional role of platelets in the innate inflammatory and matrix-degrading response in TB. METHODS: Markers of platelet activation were examined in plasma from 50 patients with TB before treatment and 50 control subjects. Twenty-five patients were followed longitudinally. Platelet-monocyte interactions were studied in a coculture model infected with live, virulent Mycobacterium tuberculosis (M.tb) and dissected using qRT-PCR, Luminex multiplex arrays, matrix degradation assays, and colony counts. Immunohistochemistry detected CD41 (cluster of differentiation 41) expression in a pulmonary TB murine model, and secreted platelet factors were measured in BAL fluid from 15 patients with TB and matched control subjects. MEASUREMENTS AND MAIN RESULTS: Five of six platelet-associated mediators were upregulated in plasma of patients with TB compared with control subjects, with concentrations returning to baseline by Day 60 of treatment. Gene expression of the monocyte collagenase MMP-1 (matrix metalloproteinase-1) was upregulated by platelets in M.tb infection. Platelets also enhanced M.tb-induced MMP-1 and -10 secretion, which drove type I collagen degradation. Platelets increased monocyte IL-1 and IL-10 and decreased IL-12 and MDC (monocyte-derived chemokine; also known as CCL-22) secretion, as consistent with an M2 monocyte phenotype. Monocyte killing of intracellular M.tb was decreased. In the lung, platelets were detected in a TB mouse model, and secreted platelet mediators were upregulated in human BAL fluid and correlated with MMP and IL-1ß concentrations. CONCLUSIONS: Platelets drive a proinflammatory, tissue-degrading phenotype in TB.


Subject(s)
Blood Platelets/immunology , Cell Proliferation/physiology , Mycobacterium tuberculosis/pathogenicity , Pneumonia/immunology , Pneumonia/physiopathology , Tuberculosis/immunology , Tuberculosis/physiopathology , Adult , Apoptosis/immunology , Apoptosis/physiology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...