Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Res ; 81(3): 671-684, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33203700

ABSTRACT

Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRß) within the TME and its restriction to the TME. This FRß+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRß as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors. SIGNIFICANCE: FRß serves as both a means to identify and target MDSCs and TAMs within the tumor, allowing for delivery of immunomodulatory compounds to tumor myeloid cells in a variety of cancers.


Subject(s)
Folate Receptor 2/metabolism , Myeloid Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Adenocarcinoma/pathology , Adenocarcinoma/secondary , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Polarity , Cellular Reprogramming Techniques , Cytokines/metabolism , Folic Acid/pharmacology , Humans , Immunomodulation/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/pathology , Myeloid-Derived Suppressor Cells/metabolism , Tumor-Associated Macrophages/metabolism , Up-Regulation
2.
Int J Cancer ; 146(2): 449-460, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31584195

ABSTRACT

Bladder cancer is the sixth most common cancer in the United States, and it exhibits an alarming 70% recurrence rate. Thus, the development of more efficient antibladder cancer approaches is a high priority. Accordingly, this work provides the basis for a transformative anticancer strategy that takes advantage of the unique characteristics of the bladder. Unlike mucin-shielded normal bladder cells, cancer cells are exposed to the bladder lumen and overexpress EGFR. Therefore, we used an EGF-conjugated anthrax toxin that after targeting EGFR was internalized and triggered apoptosis in exposed bladder cancer cells. This unique agent presented advantages over other EGF-based technologies and other toxin-derivatives. In contrast to known agents, this EGF-toxin conjugate promoted its own uptake via receptor microclustering even in the presence of Her2 and induced cell death with a LC50 < 1 nM. Furthermore, our data showed that exposures as short as ≈3 min were enough to commit human (T24), mouse (MB49) and canine (primary) bladder cancer cells to apoptosis. Exposure of tumor-free mice and dogs with the agent resulted in no toxicity. In addition, the EGF-toxin was able to eliminate cells from human patient tumor samples. Importantly, the administration of EGF-toxin to dogs with spontaneous bladder cancer, who had failed or were not eligible for other therapies, resulted in ~30% average tumor reduction after one treatment cycle. Because of its in vitro and in vivo high efficiency, fast action (reducing treatment time from hours to minutes) and safety, we propose that this EGF-anthrax toxin conjugate provides the basis for new, transformative approaches against bladder cancer.


Subject(s)
Antigens, Bacterial/administration & dosage , Antineoplastic Agents/administration & dosage , Bacterial Toxins/administration & dosage , Epidermal Growth Factor/administration & dosage , Immunotoxins/administration & dosage , Urinary Bladder Neoplasms/drug therapy , Administration, Intravesical , Animals , Antigens, Bacterial/adverse effects , Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Bacterial Toxins/adverse effects , Cell Line, Tumor , Dogs , Drug Screening Assays, Antitumor , Epidermal Growth Factor/adverse effects , Female , Humans , Immunotoxins/adverse effects , Male , Mice , Primary Cell Culture , Receptor, ErbB-2/metabolism , Treatment Outcome , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...