Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(5): 2322-2326, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38262914

ABSTRACT

Crystallization of the reaction mixture of 2-amino-4,6-diazido-1,3,5-triazine and excess tert-butylamine results in the isolation of tert-butylammonium N,N-[1'H-(1,5'-bitetrazol)-5-yl]cyanamidate, suggesting a complex decyclization/cyclization rearrangement involving breakage of the six-membered aromatic ring and the formation of two new five-membered azole rings mediated by deprotonation of the precursor by the amine. The addition of tert-butylamine to 2-amino-4,6-diazido-1,3,5-triazine gives spectroscopic indication of thermodynamically unfavorable reactivity in low-dielectric solvents, and high-level quantum chemical computations also suggest its formation to be unfavorable. A computed interconversion pathway describes the likely reaction mechanism and supports the general thermodynamic unfavorability of the reaction and the requirement for a high-dielectric environment to template formation of the ionic product and its trapping by crystallization.

2.
J Phys Chem A ; 127(51): 10860-10871, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38039193

ABSTRACT

Theoretical studies of the decomposition mechanism of energetic materials quite often scrutinize only the primary thermolysis reactions. However, the secondary reactions are crucial, inter alia, for proper building of the combustion models and understanding the autocatalytic processes. In the present study, we applied predictive DLPNO-CCSD(T) calculations to elucidate the kinetics and decomposition mechanism of a novel promising energetic material, 1,3,4,6-tetranitrooctahydroimidazo [4,5-d] imidazole (BCHMX). We identified eight previously unknown BCHMX conformers, both cis and trans in accordance to the spatial position of the H atoms bonded to a carbon bridge. Among them, the relative enthalpies of cis isomers lie in the narrow range ∼10 kJ mol-1 rendering them thermally accessible in the course of decomposition. The radical N-NO2 bond cleavage via one of the novel conformers is the dominant primary decomposition channel of BCHMX with the kinetic parameters Ea = 168.4 kJ mol-1 and log(A, s-1) = 18.5. We also resolved several contradictory assumptions on the mechanism and key intermediates of BCHMX thermolysis. To get a deeper understanding of the decomposition mechanism, we examined a series of unimolecular and bimolecular secondary channels of BCHMX. Among the former reactions, the C-C bond unzipping followed by another radical elimination of a nitro group is the most energetically favorable pathway with an activation barrier ∼113 kJ mol-1. However, contrary to the literature assumptions, the bimolecular H atom abstraction from a pristine BCHMX molecule by a primary nitramine radical product, not the nitro one, followed by another NO2 radical elimination, is the most important bimolecular secondary thermolysis reaction of BCHMX at lower temperatures. The isokinetic temperature of the bimolecular and unimolecular secondary reactions is ∼620 K. Unimolecular reactions might be important in dilute solutions, where bimolecular reactions are suppressed. The secondary reactions considered in the present work might be pertinent in the case of related energetic nitramines (e.g., RDX, HMX, and CL-20).

3.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445807

ABSTRACT

Protein unfolding is a ubiquitous process responsible for the loss of protein functionality (denaturation), which, in turn, can be accompanied by the death of cells and organisms. The nature of enthalpy-entropy compensation (EEC) in the kinetics of protein unfolding is a subject of debate. In order to investigate the nature of EEC, the "completely loose" transition state (TS) model has been applied to calculate the Arrhenius parameters for the unfolding of polyglycine dimers as a model process. The calculated Arrhenius parameters increase with increasing dimer length and demonstrate enthalpy-entropy compensation. It is shown that EEC results from the linear correlations of enthalpy and entropy of activation with dimer length, which are derived directly from the properties of the transition state. It is shown that EEC in solvated (hydrated, etc.) proteins is a direct consequence of EEC in proteins themselves. The suggested model allows us also to reproduce and explain "exotic" very high values of the pre-exponential factor measured for the proteins unfolding, which are drastically higher than those known for unimolecular reactions of organic molecules. A similar approach can be applied to analyzing the nature of EEC phenomena observed in other areas of chemistry.


Subject(s)
Protein Unfolding , Proteins , Entropy , Kinetics , Thermodynamics , Proteins/chemistry , Protein Denaturation
4.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239887

ABSTRACT

Herein we report a comprehensive laboratory synthesis of a series of energetic azidonitrate derivatives (ANDP, SMX, AMDNNM, NIBTN, NPN, 2-nitro-1,3-dinitro-oxypropane) starting from the readily available nitroisobutylglycerol. This simple protocol allows obtaining the high-energy additives from the available precursor in yields higher than those reported using safe and simple operations not presented in previous works. A detailed characterization of the physical, chemical, and energetic properties including impact sensitivity and thermal behavior of these species was performed for the systematic evaluation and comparison of the corresponding class of energetic compounds.


Subject(s)
Thermodynamics , Physical Phenomena
5.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982405

ABSTRACT

Nitro derivatives of benzotriazoles are safe energetic materials with remarkable thermal stability. In the present study, we report on the kinetics and mechanism of thermal decomposition for 5,7-dinitrobenzotriazole (DBT) and 4-amino-5,7-dinitrobenzotriazole (ADBT). The pressure differential scanning calorimetry was employed to study the decomposition kinetics of DBT experimentally because the measurements under atmospheric pressure are disturbed by competing evaporation. The thermolysis of DBT in the melt is described by a kinetic scheme with two global reactions. The first stage is a strong autocatalytic process that includes the first-order reaction (Ea1I = 173.9 ± 0.9 kJ mol-1, log(A1I/s-1) = 12.82 ± 0.09) and the catalytic reaction of the second order with Ea2I = 136.5 ± 0.8 kJ mol-1, log(A2I/s-1) = 11.04 ± 0.07. The experimental study was complemented by predictive quantum chemical calculations (DLPNO-CCSD(T)). The calculations reveal that the 1H tautomer is the most energetically preferable form for both DBT and ADBT. Theory suggests the same decomposition mechanisms for DBT and ADBT, with the most favorable channels being nitro-nitrite isomerization and C-NO2 bond cleavage. The former channel has lower activation barriers (267 and 276 kJ mol-1 for DBT and ADBT, respectively) and dominates at lower temperatures. At the same time, due to the higher preexponential factor, the radical bond cleavage, with reaction enthalpies of 298 and 320 kJ mol-1, dominates in the experimental temperature range for both DBT and ADBT. In line with the theoretical predictions of C-NO2 bond energies, ADBT is more thermally stable than DBT. We also determined a reliable and mutually consistent set of thermochemical values for DBT and ADBT by combining the theoretically calculated (W1-F12 multilevel procedure) gas-phase enthalpies of formation and experimentally measured sublimation enthalpies.


Subject(s)
Nitrogen Dioxide , Thermodynamics , Temperature , Calorimetry, Differential Scanning , Kinetics
6.
Phys Chem Chem Phys ; 25(13): 9036-9042, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36919716

ABSTRACT

The geometry of the neutral Au18 gold cluster was probed by a combination of quantum chemical calculations and far-infrared multiple photon dissociation (FIR-MPD) spectroscopy of a Kr messenger complex. Two low-lying isomers are identified to potentially contribute to the experimental IR spectrum, both being derived from a star-like Au17 structure upon capping with one extra Au atom either inside (18_1) or outside (18_5) the star. In particular, the present detection of structure 18_1 by DFT computations where a golden cage encapsulates an endohedral Au atom, is intriguing as a stable core-shell isomer has, to our knowledge, never been found before for such small neutral gold clusters. DFT and local coupled-cluster (DLPNO and PNO-CCSD(T)) computations indicate that both Au18 isomers are close to each other, within ∼3 kcal mol-1, on the energy scale. Although the exact energy ordering is again method-dependent and remains, at present, inconclusive, the most striking spectral signatures of both isomers are related to vibrational modes localized at atoms capping the inner pentaprism sub-structure that result in prominent peaks centered at ∼80 cm-1, close to the most prominent experimental feature found at 78 cm-1. The calculated IR spectra of both core-shell and hollow isomers are very similar to each other and both agree comparably well with the experimental FIR-MPD spectra of the Au18Kr1,2 complexes.

7.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500539

ABSTRACT

A convenient method to access the above perchlorates has been developed, based on the cyclocondensation of 3-aminofurazans with 1,3-diketones in the presence of HClO4. All compounds were fully characterized by multinuclear NMR spectroscopy and X-ray crystal structure determinations. Initial safety testing (impact and friction sensitivity) and thermal stability measurements (DSC/DTA) were also carried out. Energetic performance was calculated by using the PILEM code based on calculated enthalpies of formation and experimental densities at r.t. These salts exhibit excellent burn rates and combustion behavior and are promising ingredients for energetic materials.


Subject(s)
Antithyroid Agents , Perchlorates , Friction , Ketones , Nuclear Magnetic Resonance, Biomolecular
8.
Phys Chem Chem Phys ; 24(26): 16325-16342, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35758846

ABSTRACT

A reliable kinetic description of the thermal stability of energetic materials (EM) is very important for safety and storage-related problems. Among other pertinent issues, autocatalysis very often complicates the decomposition kinetics of EM. In the present study, the kinetics and decomposition mechanism of a promising energetic compound, 5-amino-3,4-dinitro-1H-pyrazole (5-ADP) were studied using a set of complementary experimental (e.g., differential scanning calorimetry in the solid state, melt, and solution along with advanced thermokinetic models, accelerating rate calorimetry, and evolved gas analysis) and theoretical techniques (CCSD(T)-F12 and DLPNO-CCSD(T) predictive quantum chemical calculations). The experimental study revealed that the strong acceleration of the decomposition rate of 5-ADP is caused by two factors: the progressive liquefaction of the sample directly observed using in situ optical microscopy, and the autocatalysis by reaction products. For the first time, the processing of the non-isothermal data was performed with a formal Manelis-Dubovitsky kinetic model that accounts for both factors. With the aid of quantum chemical calculations, we have rationalized the autocatalysis present in the formal kinetic models at the molecular level. Theory revealed an unusual primary decomposition channel of 5-ADP, viz., the two subsequent sigmatropic H-shifts in the pyrazole ring followed by the C-NO2 bond scission yielding a pyrazolyl and nitrogen dioxide radicals as simple primary products. Moreover, we found the secondary reactions of the latter radical with the 5-ADP to be kinetically unimportant. On the contrary, the substituted pyrazolyl radical turned out to undergo a facile addition to 5-ADP, followed by a fast exothermic elimination of another ˙NO2 species. We believe the latter process to contribute remarkably to the observed autocatalytic behavior of 5-ADP. Most importantly, the calculations provide detailed mechanistic evidence complementing the thermoanalytical experiment and formal kinetic models.

9.
Chem Commun (Camb) ; 58(38): 5785-5788, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35451431

ABSTRACT

The Au17 gold cluster was experimentally produced in the gas phase and characterized by its vibrational spectrum recorded using far-IR multiple photon dissociation (FIR-MPD) of Au17Kr. DFT and coupled-cluster theory PNO-LCCSD(T)-F12 computations reveal that, at odds with most previous reports, Au17 prefers two star-like forms derived from a pentaprism added by two extra Au atoms on both top and bottom surfaces of the pentaprism, along with five other Au atoms each attached on a lateral face. A good agreement between calculated and FIR-MPD spectra indicates a predominant presence of these star-like isomers. Stabilization of a star form arises from strong orbital interactions of an Au12 core with a five-Au-atom string.

10.
Dalton Trans ; 50(39): 13778-13785, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34505609

ABSTRACT

A series of energetic nitrogen-rich salts comprised of a 5-(trinitromethyl)tetrazolate anion and high-nitrogen cations was synthesized by simple and efficient chemical routes from readily available commercial reagents. These energetic materials were fully characterized by IR and multinuclear NMR (1H, 13C, 14N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt containing the 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit decent experimental densities (1.648-1.845 g cm-3) and positive enthalpies of formation (up to 725.5 kJ mol-1) and, as a result, superior detonation performance (detonation velocities 8.2-9.2 km s-1 and detonation pressures 28.5-37.8 GPa), which is comparable to or even exceeding those of commonly used booster explosive PETN. On the other hand, high mechanical sensitivity of several novel 5-(trinitromethyl)tetrazolate salts along with their high combined nitrogen-oxygen content (>81%) and excellent detonation performance render them environmentally friendly alternatives to lead-based primary explosives.

11.
J Comput Chem ; 42(30): 2145-2153, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34435682

ABSTRACT

Quantum chemical computations were used to reinvestigate the geometries, spectroscopic, and energetic properties of the gold clusters Au27 q in three charge states (q = 1, 0, -1). Density functional theory (DFT) and the domain-based local pair natural orbital modification of the coupled-cluster theory DLPNO-CCSD(T) calculations revealed that, at variance with earlier reports in the literature, while the anion Au27 - tends to exist in a tube-like form, both the lowest-energy Au27 and Au27 + isomers exhibit a pyramidal shape. However, several isomers were found to lie very close in energy, thus rendering a structural transition and their coexistence easy to occur. More specifically, the equilibrium geometry of the neutral Au27 is a core-shell pyramid-like structure with one gold atom located inside. We also identified a novel ground state for the anion Au27 - and located for the first time the global minimum of the cation Au27 + . The vertical detachment energies of the neutral and anionic states were also computed and used to assign the available experimental photoelectron spectra. Although many Au27 isomers were predicted to be energetically quasi-degenerate, the corresponding distinctive vibrational signatures can be used as fingerprints for the identification of cluster geometrical features.

12.
Phys Chem Chem Phys ; 23(29): 15522-15542, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34286759

ABSTRACT

The standard state enthalpy of formation and the enthalpy of sublimation are essential thermochemical parameters determining the performance and application prospects of energetic materials (EM). Direct experimental measurements of these properties are complicated by low volatility and high heat release in bomb calorimetry experiments. As a result, the uncertainties in the reported enthalpies of formation for a number of even well-known CHNO-containing compounds might amount up to tens kJ mol-1, while for some novel high-nitrogen molecules they reach even hundreds of kJ mol-1. The present study reports a facile approach to determining the solid-state formation enthalpies comprised of complementary high-level quantum chemical calculations of the gas-phase thermochemistry and advanced thermal analysis techniques yielding sublimation enthalpies. The thermogravimetric procedure for the measurement of sublimation enthalpy was modified by using low external pressures (down to 0.2 Pa). This allows for observing sublimation/vaporization instead of thermal decomposition of the compounds studied. Extensive benchmarking on nonenergetic and energetic compounds reveals the average and maximal absolute errors of the sublimation enthalpies of 3.3 and 11.0 kJ mol-1, respectively. The comparison of the results with those obtained from the widely used Trouton-Williams empirical equation shows that the latter underestimates the sublimation enthalpy up to 140 kJ mol-1. Therefore, we performed a reparametrization of the latter equation with simple chemical descriptors that reduces the mean error down to 30 kJ mol-1. Highly accurate multi-level procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were used to calculate theoretically the gas-phase formation enthalpies. In several cases, the DLPNO-CCSD(T) enthalpies of isodesmic reactions were also employed to obtain the gas-phase thermochemistry for medium-sized important EMs. Combining the obtained thermochemical properties, we determined the solid-state enthalpies of formation for nearly 60 species containing various important explosophoric groups, from common nitroaromatics, nitroethers, and nitramines to novel nitrogen-rich heterocyclic species (e.g., the derivatives of pyrazole, tetrazole, furoxan, etc.). The large-scale benchmarking against the available experimental solid-state enthalpies of formation yielded the maximal inaccuracy of the proposed method of 25 kJ mol-1.

13.
Molecules ; 25(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322001

ABSTRACT

In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4'-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3'-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.


Subject(s)
Explosive Agents/chemistry , Oxadiazoles/chemistry , Calorimetry, Differential Scanning , Chemical Phenomena , Chemistry Techniques, Synthetic , Isomerism , Models, Molecular , Molecular Conformation , Molecular Structure , Nitro Compounds/chemical synthesis , Nitro Compounds/chemistry , Oxadiazoles/chemical synthesis , Phase Transition , Thermodynamics
14.
J Phys Chem A ; 124(38): 7665-7677, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32786967

ABSTRACT

Azobis tetrazole and triazole derivatives containing long catenated nitrogen atom chains are of great interest as promising green energetic materials. However, these compounds often exhibit poor thermal stability and high impact sensitivity. Kinetics and mechanism of the primary decomposition reactions are directly related to these issues. In the present work, with the aid of highly accurate CCSD(T)-F12 quantum chemical calculations, we obtained reliable bond dissociation energies and activation barriers of thermolysis reactions for a number of N-rich heterocycles. We studied all existing 1,1'-azobistetrazoles containing an N10 chain, their counterparts with the 5,5'-bridging pattern, and the species with hydrazo- and azoxy-bridges, which are often present energetic moieties. The N8-containing azobistriazole was considered as well. For all compounds studied, the radical decomposition channel was found to be kinetically unfavorable. All species decompose via the ring-opening reaction yielding a transient azide (or diazo) intermediate followed by the N2 elimination. In the case of azobistetrazole derivatives, the calculated effective activation barriers of decomposition are ∼26-33 kcal mol-1, which is notably lower than that of tetrazole (∼40 kcal mol-1). This fact agrees well with the low thermal stability and high impact sensitivities of the former species. The activation barriers of the N2 elimination were found to be almost the same for the azobis compounds and the parent tetrazole, and the effective decomposition barrier is determined by the thermodynamics of the tetrazole-azide rearrangement. In comparison with 1,1'-azobistetrazole, the hydrazo-bridged compound is more stable kinetically due to the lack of pi-conjugation in the azide intermediate. In turn, the azoxy-bridged compounds are entirely unstable due to tremendous azide stabilization by the hydrogen bond formation. In general, the 5,5'-bridged species are more thermally stable than their 1,1'-counterparts due to a much higher barrier of the N2 elimination. Apart from this, the highly accurate gas-phase formation enthalpies were calculated at the W1-F12 level of theory for all species studied.

15.
Chem Sci ; 12(6): 2268-2275, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-34163993

ABSTRACT

Cyanuric triazide reacts with several transition metal precursors, extruding one equivalent of N2 and reducing the putative diazidotriazeneylnitrene species by two electrons, which rearranges to N-(1'H-[1,5'-bitetrazol]-5-yl)methanediiminate (biTzI2-) dianionic ligand, which ligates the metal and dimerizes, and is isolated from pyridine as [M(biTzI)]2Py6 (M = Mn, Fe, Zn, Cu, Ni). Reagent scope, product analysis, and quantum chemical calculations were combined to elucidate the mechanism of formation as a two-electron reduction preceding ligand rearrangement.

16.
J Phys Chem A ; 123(45): 9818-9827, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31633937

ABSTRACT

Highly accurate theoretical values of formation enthalpies and bond energies are crucial for reliable predictions of performance and detonation-related phenomena of energetic materials (EM). However, high-level ab initio calculations even for medium-sized important EMs still remain a demanding challenge. In the present work, we studied in detail the gas-phase thermochemistry of novel high-energy polynitro derivatives of 5/6/5 structural frameworks comprised of fused 1,2,3,4,-tetrazine and two 1,2,4-triazole or pyrazole rings. To this end, we proposed and benchmarked a "bottom-up" approach. First, highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were utilized for smaller species. In turn, for medium-sized species (up to 24 non-H atoms), these values were complemented with the enthalpies of isodesmic reactions calculated using the recently proposed domain-based local pair natural orbital (DLPNO) modifications of coupled cluster techniques. The benchmarks on a number of atomization energies and enthalpies of isodesmic reactions reveal that the DLPNO-CCSD(T)/aVQZ approach does not deteriorate the quality of the W1-F12 and W2-F12 procedures and exhibits overall accuracy close to "chemical" (∼1 kcal mol-1). We obtained a set of accurate and mutually consistent gas-phase formation enthalpies for 12 energetic heterocyclic species. Among them, the gas-phase formation enthalpy of 1,2,9,10-tetranitrodipyrazolo[1,5-d:5',1'-f][1,2,3,4]tetrazine, a novel promising EM, turned out to be ΔfHgas0 = 214.5 kcal mol-1, which is ∼12 kcal mol-1 higher than the best theoretical estimates available in the literature. The formation enthalpy of another novel EM, a fused tricyclic 1,2,3,4-tetrazine with two nitro-1,2,4-triazole moieties, was predicted to be ΔfHgas0 = 213.5 kcal mol-1, which is also ∼4 kcal mol-1 higher than the reported value. Apart from this, we considered the thermodynamics of radical reactions (viz., C-NO2 bond scission) and the thermochemistry of the corresponding radicals. The difference between DLPNO-CCSD(T)/aVQZ and CCSD(T)-F12/VTZ-F12 benchmark values did not exceed 1 kcal mol-1. In a more general sense, the use of DLPNO-CCSD(T) in conjunction with the bottom-up approach is promising for quantitative thermochemical calculations of energetic materials composed of species up to several dozens of CHNO atoms.

17.
J Phys Chem A ; 123(23): 4883-4890, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-30920217

ABSTRACT

Highly accurate theoretical values of bond energies and activation barriers of primary decomposition reactions are crucial for reliable predictions of thermal decomposition and detonation-related phenomena of energetic materials (EM). However, due to the prohibitive computational cost, high-level ab initio calculations had been impractical for a large number of important EMs, including, e.g., hexanitrohexaazaisowurtzitane (CL-20). In the present work, we obtained accurate bond dissociation energies and the activation barriers for primary decomposition reactions for a series of novel promising caged polynitroamino and polynitro EMs, viz., CL-20, TEX, octanitrocubane (ONC), and hexanitro derivatives of adamantane, using the recently proposed domain-localized pair natural orbitals (DLPNO) modifications of coupled cluster techniques. DLPNO-CCSD(T) allows for routine quadruple-ζ basis set quality coupled cluster calculations for the species comprised of ∼30 non-H atoms. The benchmarks on a number of simpler congeners of CL-20 and ONC revealed that the DLPNO approach does not deteriorate the quality of the quadruple-ζ coupled cluster procedure. With the aid of this technique, the full set of gas-phase primary decomposition reactions for all 9 conformers of CL-20 was considered. For all species studied, C-NO2 or N-NO2 radical decomposition channels dominate over molecular counterparts. The best theoretical results reported in the literature so far, viz., density functional theory energies of nitro group radical elimination in CL-20 and ONC, underestimate the value by ∼10 kcal mol-1. We also present reliable and accurate gas-phase formation enthalpies for CL-20, ONC, and related species. In a more general sense, these results offer a new level of predictive computational kinetics for polynitro-caged energetic materials.

18.
Phys Chem Chem Phys ; 20(46): 29285-29298, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30430162

ABSTRACT

The thermal stability of energetic materials, being of the utmost importance for safety issues, is often considered in terms of kinetics, e.g., the Arrhenius parameters of the decomposition rate constant. The latter, in turn, are commonly determined using conventional thermoanalytical procedures with the use of simple Kissinger or Ozawa methods for kinetic data processing. However, thermal decomposition of energetic materials typically occurs via numerous exo- and endothermal processes including fast parallel reactions, phase transitions, autocatalysis, etc. This leads to numerous drawbacks of simple approaches. In this paper, we proposed a new methodology for characterization of the thermochemistry and thermal stability of melt-cast energetic materials, which is comprised of a complementary set of experimental and theoretical techniques in conjunction with a suitable kinetic model. With the aid of the proposed methodology, we studied in detail a novel green oxidizer, tetranitroacetimidic acid (TNAA). The experimental mass loss kinetics in the melt was perfectly fitted with a model comprised of zero-order reaction (sublimation or evaporation) and first-order thermal decomposition of TNAA with the effective Arrhenius parameters Ea = 41.0 ± 0.2 kcal mol-1 and log(A/s-1) = 20.2 ± 0.1. We rationalized the experimental findings on the basis of highly accurate CCSD(T)-F12 quantum chemical calculations. Computations predict that thermolysis of TNAA involves an intricate interplay of multiple decomposition channels of the three tautomers, which are equilibrated via either monomolecular reactions or concerted double hydrogen atom transfer in the H-bonded dimers; the calculated Arrhenius parameters of the effective rate constant coincide well with experiment. Most importantly, calculations provide detailed mechanistic evidence missing in the thermoanalytical experiment and explain formation of the experimentally observed primary products N2O and NO2. Along with the kinetics and mechanism of decomposition, the proposed approach yields accurate thermochemistry and phase change data of TNAA.

19.
J Phys Chem A ; 122(15): 3939-3949, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29584435

ABSTRACT

Thermochemistry, kinetics, and mechanism of thermal decomposition of 1,5-diaminotetrazole (DAT), a widely used "building block" of nitrogen-rich energetic compounds, were studied theoretically at a high and reliable level of theory (viz., using the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ procedure). Quantum chemical calculations provided detailed insight into the thermolysis mechanism of DAT missing in the existing literature. Moreover, several contradictory assumptions on the mechanism and key intermediates of thermolysis were resolved. The unimolecular primary decomposition reactions of the seven isomers of DAT were studied in the gas phase and in the melt using a simplified model of the latter. The two-step reaction of N2 elimination from the diamino tautomer was found to be the primary decomposition process of DAT in the gas phase and melt. The effective Arrhenius parameters of this process were calculated to be E a = 43.4 kcal mol-1 and log( A/s-1) = 15.2 in a good agreement with the experimental values. Contrary to the existing literature data, all other decomposition channels of DAT isomers turned out to be kinetically unimportant. Apart from this, a new primary decomposition channel yielding N2, cyanamide, and 1,1-diazene was found for some H-bonded dimers of DAT. We also determined a reliable and mutually consistent set of thermochemical values for DAT (Δ f H solid0 = 74.5 ± 1.5 kcal·mol-1) by combining theoretically calculated (W1 multilevel procedure along with an isodesmic reaction) gas phase enthalpy of formation (Δ f H gas0 = 100.7 ± 1.0 kcal·mol-1) and experimentally measured sublimation enthalpy (Δ sub H0 = 26.2 ± 0.5 kcal·mol-1).

20.
J Phys Chem A ; 122(4): 1064-1070, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29334730

ABSTRACT

The UV-photodissociation at 266 nm of a widely used TiO2 precursor, titanium tetraisopropoxide (Ti(OiPr)4, TTIP), was studied under molecular-beam conditions. Using the MS-TOF technique, atomic titanium and titanium(II) oxide (TiO) were detected among the most abundant photofragments. Experimental results were rationalized with the aid of quantum chemical calculations (DLPNO-CCSD(T) and DFT). Contrary to the existing data in the literature, the new four-centered acetone-elimination reaction was found to be the primary decomposition process of TTIP. According to computational results, the effective activation barrier of this channel was ∼49 kcal/mol, which was ∼13 kcal/mol lower than that of the competing propylene elimination. The former process, followed by the dissociative loss of an H atom, was a dominating channel of TTIP unimolecular decay. The sequential loss of isopropoxy moieties via these two-step processes was supposed to produce the experimentally observed titanium atoms. In turn, the combination of these reactions with propylene elimination can lead to another detected species, TiO. These results indicate that the existing mechanisms of TTIP thermal and photoinitiated decomposition in the chemical-vapor deposition (CVD) of titanium dioxide should be reconsidered.

SELECTION OF CITATIONS
SEARCH DETAIL
...