Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CBE Life Sci Educ ; 21(4): ar72, 2022 12.
Article in English | MEDLINE | ID: mdl-36154117

ABSTRACT

We explored the impacts of a mathematics prerequisite on student success in Introductory Biology, focusing on students historically underserved in science, technology, engineering, and mathematics (STEM). Specifically, we studied Introductory Biology student outcomes 5 years before and 6 years after adding the prerequisite. Students who had not previously passed Intermediate Algebra had a 54.91% chance of passing Introductory Biology, compared with a ​​69.25% chance for students who had passed this math course. Furthermore, we found a disproportionate benefit of passing the math course for Pell Grant recipients. When considering pre- versus post-prerequisite terms of Introductory Biology, we found pass rates were significantly higher after the mathematics prerequisite was required, but grades were not. After the mathematics prerequisite, enrollments in Introductory Biology temporarily decreased in comparison to a similar chemistry course and the college's overall enrollments, a potential cost to students. Pell Grant recipients and women took Introductory Biology at the same rate as before, and contrary to our hypothesis, we saw the proportion of persons excluded due to ethnicity or race (PEER) students enrolled in Introductory Biology was higher after the implementation. This study provides a model for assessing prerequisites in a local context and contributes evidence that mathematical prerequisites can benefit students.


Subject(s)
Biology , Students , Biology/education , Curriculum , Educational Measurement , Female , Humans , Mathematics
2.
CBE Life Sci Educ ; 16(2)2017.
Article in English | MEDLINE | ID: mdl-28450448

ABSTRACT

Nearly half of all undergraduates are enrolled at community colleges (CCs), including the majority of U.S. students who represent groups underserved in the sciences. Yet only a small minority of studies published in discipline-based education research journals address CC biology students, faculty, courses, or authors. This marked underrepresentation of CC biology education research (BER) limits the availability of evidence that could be used to increase CC student success in biology programs. To address this issue, a diverse group of stakeholders convened at the Building Capacity for Biology Education Research at Community Colleges meeting to discuss how to increase the prevalence of CC BER and foster participation of CC faculty as BER collaborators and authors. The group identified characteristics of CCs that make them excellent environments for studying biology teaching and learning, including student diversity and institutional cultures that prioritize teaching, learning, and assessment. The group also identified constraints likely to impede BER at CCs: limited time, resources, support, and incentives, as well as misalignment between doing research and CC faculty identities as teachers. The meeting culminated with proposing strategies for faculty, administrators, journal editors, scientific societies, and funding agencies to better support CC BER.


Subject(s)
Biology/education , Faculty , Research , Students , Capacity Building , Humans , Schools
SELECTION OF CITATIONS
SEARCH DETAIL