Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Zoolog Sci ; 21(3): 251-5, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15056919

ABSTRACT

To give information about intracellular Ca2+ translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3 degrees C) that greatly reduced the rate of Ca2+ reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling phase of action potential was markedly slowed at first to prolong its refractory period, so that repetitive stimulation (20 Hz) did not produce a complete tetanus. Meanwhile, on membrane repolarization after spontaneous relaxation of K-contractures, the action potentials were markedly reduced in amplitude and prolonged in duration at first, also resulting in prolonged refractory period. These results are discussed in connection with Ca2+ absorption to the surface and transverse tubule membranes, producing changes in action potential kinetics.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Ranidae/physiology , Animals , Electromyography , Potassium , Sarcoplasmic Reticulum/metabolism , Temperature
2.
J Exp Biol ; 207(Pt 10): 1675-81, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15073200

ABSTRACT

The anterior byssal retractor muscle (ABRM) of the bivalve Mytilus edulis shows a prolonged tonic contraction, called the catch state. To investigate the catch mechanism, details of which still remain obscure, we studied the mechanical responses of ABRM fibres to quick increases in load applied during maximum active isometric force (P(0)) generation and during the catch state. The mechanical response consisted of three components: (1) initial extension of the series elastic component (SEC), (2) early isotonic fibre lengthening with decreasing velocity, and (3) late steady isotonic fibre lengthening. The ABRM fibres could bear extremely large loads up to 10-15P(0) for more than 30-60 s, while being lengthened extremely slowly. If, on the other hand, quick increases in load were applied during the early isometric force development, the ABRM fibres were lengthened rapidly ('give') under loads of 1.5-2P(0). These findings might possibly be explained by two independent systems acting in parallel with each other; one is the actomyosin system producing active shortening and active force generation, while the other is the load-bearing system responsible for the extremely marked load-bearing ability as well as the maintenance of the catch state.


Subject(s)
Bivalvia/physiology , Isometric Contraction/physiology , Muscle Fibers, Skeletal/physiology , Muscle, Smooth/physiology , Actomyosin/physiology , Animals , Biomechanical Phenomena , Japan , Transducers , Video Recording , Weight-Bearing/physiology
3.
J Exp Biol ; 206(Pt 7): 1201-6, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12604580

ABSTRACT

We were interested to estimate the maximum mechanical efficiency with which chemical energy derived from ATP hydrolysis is converted into mechanical work by individual cross-bridges when they perform their powerstroke synchronously. Glycerinated rabbit psoas muscle fibres, containing ATP molecules almost equal in number to the cross-bridges within the fibre, were activated to shorten under various afterloads by laser-flash photolysis of caged Ca(2+). In these conditions, almost all the cross-bridges are in the state where the ATP is hydrolyzed but the products have not yet been released from the cross-bridge (M-ADP-P(i)) immediately before activation, and can hydrolyze only one ATP molecule during the flash-induced mechanical response. Power output records of the fibres following activation indicated that the cross-bridges actually started their powerstroke almost synchronously. The amount of ATP utilized at 1 s after activation was estimated from the amount of isometric force developed after interruption of fibre shortening, while the amount of work done was calculated by multiplying the amount of afterload by the distance of fibre shortening. A conservative estimation of the maximum mechanical efficiency at a load of 0.5-0.6 P(o) was 0.7, suggesting that the actual maximum mechanical efficiency of cross-bridge powerstrokes may be close to unity.


Subject(s)
Biomechanical Phenomena , Myofibrils/physiology , Psoas Muscles/physiology , Adenosine Triphosphate/metabolism , Animals , Hydrolysis , Isotonic Contraction , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL