Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Biol ; 18(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33276350

ABSTRACT

The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.


Subject(s)
Biomechanical Phenomena , Morphogenesis , Signal Transduction , Models, Biological
2.
Proc Natl Acad Sci U S A ; 117(29): 16969-16975, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32611816

ABSTRACT

Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common ("universal") functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.


Subject(s)
Cell Lineage , Cell Self Renewal , Stem Cell Niche , Animals , Cell Survival , Female , Homeostasis , Intestines/cytology , Intestines/growth & development , Kidney/cytology , Kidney/growth & development , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mice , Models, Theoretical , Signal-To-Noise Ratio , Stem Cells/cytology , Stem Cells/physiology
3.
Nat Neurosci ; 21(12): 1717-1727, 2018 12.
Article in English | MEDLINE | ID: mdl-30455454

ABSTRACT

SETD5 gene mutations have been identified as a frequent cause of idiopathic intellectual disability. Here we show that Setd5-haploinsufficient mice present developmental defects such as abnormal brain-to-body weight ratios and neural crest defect-associated phenotypes. Furthermore, Setd5-mutant mice show impairments in cognitive tasks, enhanced long-term potentiation, delayed ontogenetic profile of ultrasonic vocalization, and behavioral inflexibility. Behavioral issues are accompanied by abnormal expression of postsynaptic density proteins previously associated with cognition. Our data additionally indicate that Setd5 regulates RNA polymerase II dynamics and gene transcription via its interaction with the Hdac3 and Paf1 complexes, findings potentially explaining the gene expression defects observed in Setd5-haploinsufficient mice. Our results emphasize the decisive role of Setd5 in a biological pathway found to be disrupted in humans with intellectual disability and autism spectrum disorder.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Long-Term Potentiation/genetics , Methyltransferases/genetics , Animals , Brain/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Haploinsufficiency , Methyltransferases/metabolism , Mice, Knockout , RNA Polymerase II/metabolism , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...